It is based on a Directx 9 water simulation I made in Unity earlier, to learn about 3D rendering and shaders. This one has been completely rebuilt to use Compute Shaders, in stead of hacked together Vertex and Fragment shaders. The availability of the ComputeBuffer in Unity 4 means that it is now possible to use the high precision (floating point) height map data that is used for the terrain and w
NVIDIA MDL SDK The NVIDIA Material Definition Language (MDL) SDK is a set of tools to enable quick integration of physically-based materials into rendering applications. It contains comprehensive C++ and Python APIs that allow applications to load MDL modules, analyze, and understand the structure of a material so it can build a UI for material editing and render the results. NVIDIA will soon open
ãã® Qiita ã®é£è¼è¨äºã§ã¯ãã¼ã¿åæã®ããã®ä¸»è¦è¨èªã¨ã㦠Python ãå©ç¨ãã¦ãã¾ãããã¨ããã§ã¿ãªãã㯠Python ã®ã³ã¼ãã£ã³ã°è¦ç´ PEP8 ããåç¥ã§ããããã ã½ã¼ã¹ã³ã¼ãã¹ã¿ã¤ã«ã¬ã¤ã PEP8 ã½ã¼ã¹ã³ã¼ãã¯ä¸è¬ã«ãæ¸ãããæéãããããèªã¾ããæéãã®æ¹ãé·ãããã®ãããªäºå®ã«åºã¥ãã¦ããã¹ã¿ã¤ã«ãçµ±ä¸ãèªã¿ãããã³ã¼ããæ¸ãããã¨ããã¢ã¤ãã¢ã®ãã¨ã«ä½ãããã®ããã®ã¬ã¤ãã§ãã Style Guide for Python Code http://legacy.python.org/dev/peps/pep-0008/ æ¬å®¶ã¯å½ç¶ãªããè±èªã§ããæå¿ã®æ¹ãæ¥æ¬èªã«ç¿»è¨³ãã¦ãã ãã£ã¦ãã¾ãã PEP8 æ¥æ¬èªè¨³ https://github.com/mumumu/pep8-ja ã©ã¡ãã«ãã Python ãå©ç¨ããæ¹ã¯å¿ ãä¸èªããã¹ããã¨æãã¾ãã èªåç
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
ãã®ç¿»è¨³ã«ã¤ã㦠翻訳対象 GitHub Flavored Markdown - User Documentation ã¨ã¦ãæè¨³ éã¨ã³ã¸ãã¢åã Github å¸æç¨ æ¥æ¬äºº éã¨ã³ã¸ãã¢åã ãç®çãªã®ã§ã便ã説æãåæã«ç·¨éãã¦ãã¨ãããããã¾ãã GitHub Flavored Markdown GitHub ã¯ãµã¤ãå ã® ã¤ã·ã¥ã¼, ã³ã¡ã³ã, ãã«ãªã¯ã¨ã¹ããªã©ã« GitHub Flavored Markdown (GFM) ãæ¡ç¨ãã¦ãã¾ãã æ¨æºã® Markdown ã¨ã¯ããã¤ã大ããªéãããããæ©è½è¿½å ããã¦ãã¾ãã ããããªããã¾ã Markdown ã«æ £ãã¦ããªãã®ã§ããã°ããããããæ¨æºç㪠Markdown è¨æ³ã®åºæ¬ ( 翻訳 GitHub Help - Markdown Basics )ã確èªãã¦ããã¦ãã ããã ã¿ã¹ã¯ãªã¹ããªã©ã®æ¡å¼µè¨æ³ã«ã¤ãã¦ç¥ããã
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
AI & MLLearn about artificial intelligence and machine learning across the GitHub ecosystem and the wider industry. Generative AILearn how to build with generative AI. GitHub CopilotChange how you work with GitHub Copilot. LLMsEverything developers need to know about LLMs. Machine learningMachine learning tips, tricks, and best practices. How AI code generation worksExplore the capabilities and be
ã¯ãªã¹ãã¹ãéãã¦ããå§ã¾ã Sphinx ã¢ããã³ãã«ã¬ã³ãã¼ã¸ãããã (å) Sphinx 大åé£è¼ç¬¬äºå¤ã§ãã ã¿ã¤ãã«ã«ããéããSphinx ã®ã¡ã³ããæ´»åããã¦ä¸å¹´ãéããã®ã§ããã®è©±ããã¾ãã OSS éçºè ã®ã²ã¨ã¤ã®ãµã³ãã«ã±ã¼ã¹ã¨ãã¦ãä½ãã®åèã«ãªãã°å¹¸ãã§ãã Sphinx ã®ã¡ã³ããæ´»åãã¯ããã¾ãã å»å¹´ã® 12æãã Sphinx ã®ã¡ã³ããæ´»åãã¯ããã¾ããã Python ã®ãªãªã¼ã¹ããã¼ã¸ã£æ´»åãå¿ããã£ããããåä½è ã® Georg ã®æ´»åãéãã ã¾ãããã®å¾ãç¶ãã æ¸ æ°´å·ãããå¿ããã¦èº«åããåããªããªã£ã¦ãããã¨ããã ã³ãããæ¨©ãããã£ã¦ãããã¨ã ãããã¼ãã¿ã¤ã ã§æä¼ããã¨æã£ããã¨ããã£ããã§ããã 以åããã³ãããæ¨©ã¯æã£ã¦ãããã®ã®ãä¸åã¡ã³ããã¨ãã¦ã®æ´»åããã¦ããªãã£ãã®ã§ã å¾ã ã«ãã±ãããæºã¾ã£ã¦ããæ§åã«å¾ãããããªã£ãã®ããã
åååçºé»æããåºãããããããæ ¸ã®ãã¿ããããããå½ã®æµ·æ´ç ç©¶éçºæ©æ§ããæ·±ãï¼ï¼ï¼ï¼ã¡ã¼ãã«è¦æ¨¡ã®å°ä¸ã«å¦åãããæ°ããªæè¡ã®å¯è½æ§ãæ¢ãåºç¤çãªèª¿æ»ç ç©¶ã太平æ´ã®å鳥島ã§è¡ããã¨ãæ¤è¨ãã¦ãããã¨ããããã¾ããã ããããä¸ãå½ã®ç ç©¶æ©é¢ãæµ·æ´ç ç©¶éçºæ©æ§ããä»ã®è¨ç»ã¨ã¯ç°ãªãæ·±ãï¼ï¼ï¼ï¼ã¡ã¼ãã«è¦æ¨¡ã®å°ä¸ã«å¦åãããæ°ããªæè¡ã®å¯è½æ§ãæ¢ãåºç¤çãªèª¿æ»ç ç©¶ãæ¤è¨ãã¦ãããã¨ããããã¾ããã 調æ»ã¯å°è³ªå¦çã«å®å®ãã太平æ´ãã¬ã¼ãä¸ã«ããå鳥島ã§ãæ¥å¹´åº¦ä»¥éãæµ·æ´æ¢æ»è¹ãªã©ã使ã£ã¦ãå°å½¢ãå°è³ªãªã©ã®ãã¼ã¿åéãè¡ãæ¹åã§èª¿æ´ãé²ãããã¨ãã¦ãã¾ãã å°ä¸ï¼ï¼ï¼ï¼ã¡ã¼ãã«è¦æ¨¡ã®æ·±ãã§ã®å¦åæè¡ã¯ãæµ·å¤ã§ç ç©¶ãè¡ããã¦ãã¾ãããæè¡çãªèª²é¡ãå¤ãã確ç«ããã¦ãã¾ãããå½ãå½éçã«ææãªä»ã®å°å±¤å¦åãåæã«è¨ç»ãé²ãã¦ãããã¨ãããæµ·æ´æ©æ§ã¯ãã¾ãã¯ç¬èªã«ç ç©¶ãå§ãããã¨ãæ¤è¨ãã¦ãã¾ãã
éåæã¸ã§ãã¬ã¼ã¿ ç¾å¨ã®Pythonã§ã¯ãã¸ã§ãã¬ã¼ã¿ã使ã£ã¦ãã¨ã¦ããæè»½ã«ã¤ãã¬ã¼ã¿ã使ã§ãããä¾ãã°ã奿°åãçæããã¸ã§ãã¬ã¼ã¿ã¯ã次ã®ããã«æ¸ããã def odds(): i = 1 while True: yield i i += 2 ããããã¸ã§ãã¬ã¼ã¿ãåå¨ããªãã£ãé ã®Pythonã§ã¯ããããã__iter__ã¡ã½ãããªã©ã®ç¹æ®ã¡ã½ãããå®è£ ããã¯ã©ã¹ãå®ç¾©ãã class Odds: def __init__(self): self._cur = 1 def __iter__(self): return self def next(self): ret = self._cur self._cur += 2 return ret ãªã©ã¨æ¸ããªããã°ãªããªãã£ãã Python3.5ã§å°å ¥ããã ã³ã«ã¼ãã³ ã¯ãã¤ãã¬ã¼ã¿ã¨åæ§ãªæ¦å¿µã¨ã㦠éåæã¤ãã¬ã¼ã¿ ããµãã¼
ã¯ã©ã¹å®ç¾©ã®ã«ã¹ã¿ãã¤ãº ããã¾ã§ãPythonã®ã¯ã©ã¹å®ç¾©ãã«ã¹ã¿ãã¤ãºããææ®µã¨ãã¦ãã¡ã¿ã¯ã©ã¹ã使ããã¦ãããããããã¡ã¿ã¯ã©ã¹ãå©ç¨ããã«ã¹ã¿ãã¤ãºã¯ãPythonã®ãªãã¸ã§ã¯ãã¢ãã«ãåã·ã¹ãã ã®ç¥èãå¿ è¦ã§å®è£ ãé£ãããã¾ãè¤æ°ã®ã¡ã¿ã¯ã©ã¹ãåæã«ä½¿ç¨ããã®ãé£ããããªã©ã®åé¡ç¹ããã£ããããã§ãPEP 487 -- Simpler customisation of class creation ã§ã¯ãã¡ã¿ã¯ã©ã¹ã使ããã«ã¯ã©ã¹ãã«ã¹ã¿ãã¤ãºããææ®µãæä¾ãã¦ãã init_subclass() ã¡ã½ãã ã¯ã©ã¹ã®ãµãã¯ã©ã¹ã使ãããã¨ãã«å¼ã³åºããã弿°ã¨ãã¦ãæ´¾çã¯ã©ã¹ã¨ãã¯ã©ã¹å®ç¾©ã®å¼æ°ã渡ãããã__init_subclass__()ã¡ã½ããã¯ãèªåçã«ã¯ã©ã¹ã¡ã½ããã¨ãªãã class Spam: def __init_subclass__(cls, **kwarg
ãã¡ã¤ã«ã·ã¹ãã ãã¹ ãããã³ã« pathlib ã¯Python3.4ã§å°å ¥ãããããpathlibã§è¡¨ç¾ããããã¡ã¤ã«ãã¹ã¯ã open() ãos.path.* ãªã©ã®ãæ¢åã®ãã¡ã¤ã«æä½é¢é£é¢æ°ã§ã¯ä½¿ç¨ã§ããªãããããã¾ã便å©ã«ã¯ä½¿ãã¦ããªãã£ãã Python3.6ããã¯ãpathlib.Path ãªã©ã®ãã¡ã¤ã«ãã¹ããããããªãã¸ã§ã¯ãã«ç¹æ®ã¡ã½ãã __fspath__() ãå®è£ ãããããã¡ã¤ã«åã弿°ã¨ãã¦åãåããopen() ãªã©ã®é¢æ°ã¯ã__fspath__()ãå¼ã³åºãã¦ããã¡ã¤ã«ãã¹ãåå¾ããããã«å¤æ´ãããã >>> import pathlib >>> spam = pathlib.Path('./spam') >>> spam.__fspath__() 'spam' >>> open(spam, 'w') <_io.TextIOWrapper name='s
fæåå ããã¾ã§ãPythonã§æååã«å¤æ°ãåãè¾¼ãæ¹å¼ã«ã¯ããã¤ããã£ãããã¤ãã«å¼ãæååä¸ã«ç´æ¥è¨è¿°ã§ããããã«ãªã£ãã (PEP 498 -- Literal String Interpolation) å¼ãåãè¾¼ãã æååã¯fæåå(formatted string:ãã©ã¼ãããæ¸ã¿æåå)ã¨å¼ã°ããrawæååã® r ã¨åãããã«ãå é ã« f ãæå®ãã fæååã¯éå¸¸ã®æååã¨åãããã使ããããæååå ã® {} ã§å²ã¾ããé¨åã¯ãPythonã®å¼ã¨ãã¦è©ä¾¡ãããã®çµæãæååã¨ãã¦åºåããã >>> f'hello' # å¼ãå«ã¾ãªãfæåå 'hello' >>> f'100+1={100+1}' # å¼ãè©ä¾¡ '100+1=101' >>> order={'spam':100, 'ham':200} >>> f'spam: {order["spam"]}, ham:
夿°ã¢ããã¼ã·ã§ã³ PEP 484 -- Type Hintsã§å°å ¥ãããåãã³ãããã¢ã¸ã¥ã¼ã«ã®ã°ãã¼ãã«å¤æ°ããã¯ã©ã¹ã®ã¤ã³ã¹ã¿ã³ã¹å¤æ°ãªã©ã«ãæå®ã§ããããã«ãªã£ããPEP 526 -- Syntax for Variable Annotations 夿°ã®åã¢ããã¼ã·ã§ã³ã¯ãmypy ãªã©ã§ã¯ã³ã¡ã³ãã¨ãã¦æå®ããããã«ãªã£ã¦ããããPython3.6以éã§ã¯ãæ£å¼ãªPythonã®æ§æã§æå®ã§ããããã«ãªã£ãã >>> SPAM:str = 'global spam string' # SPAM 㯠stråã°ãã¼ãã«å¤æ° >>> class Ham: ... EGG: int = 100 # EGGã¯intåã¯ã©ã¹å¤æ° ãã®ä¾ã§ã¯ãä»£å ¥æã§å¤æ°ã使ããã®ã¨åæã«åã宣è¨ãã¦ãããã夿°ã®å¤ãæå®ããã«ã夿°ã®åã ãã§ã宣è¨ã§ããããã®å ´åã¯ä»£å ¥æã§ã¯ä½¿ç¨ããã«ã >>> SPA
ï¾ï¾ï½°ï¾ï¾ï¾ï½°ï¾ï¾ï½¸ï¾ã¯ã³ã¢ãã£ãã£åãã¦ãã¦ãã³ãä»ãã®æ¹ãä»å 価å¤é«ãã¨ããããï¾ï¾-FNã§ä¸»ã«å·¥ä½æ å½ã®tai2anã§ãã NHKã§å ¨å½æ¾éãããAmazon Picking Challengeã§ã¬ã ãã¹ã£ãã¹ãã®ãã³ããããã³ã³ææºè¼ã®æ»ãå°ã¨ããå·¥ä½ãã¦ã¾ããã ã¨ã¯ããããã£ã±ãã¡ãã£ã¨ãã£ã¼ãã©ã¼ãã³ã°ãã¦ã¿ããã®ã§1,2ãæåããchainerãåå¼·ãå§ãã¾ããã ãã£ãããªã®ã§ç·ç»ã®çè²ãããããªã¼ã¨æã£ã¦è²ã 試ãã¦ã¿ã¾ããã ç·ç»ã®çè²ã¯æå¸«ããå¦ç¿ãªã®ã§ç·ç»ã¨çè²æ¸ã¿ã®ç»åã®ãã¼ã¿ã»ããã(ã§ããã°å¤§éã«)å¿ è¦ã§ãã ä»åã¯OpenCVã§ã«ã©ã¼ã®ç»åããç·ç»ãé©å½ã«æ½åºãã¦ãã¾ãã æ½åºä¾ â ã«ã©ã¼ã®ç»åãéãã¦ç·ç»ãä½ãã°ãã¼ã¿ã»ããã®å®æã§ããï¼ä»åã¯ï¼ï¼ä¸æããã使ã£ã¦ãã¾ãï¼ ãããã¯ã¼ã¯ã®å½¢ã§ãããU-netã¨ããæåã®æ¹ã§ã³ã³ããªã¥ã¼ã·ã§ã³ããæã®å±¤ã®åº
ãGoogle Assistantããã¤ãã«æ¥æ¬èªã«å¯¾å¿ãã¾ãããããã¾ã§ã¯æ¥æ¬èªã§ä½ãè¨ãã¨ããã¿ã¾ãããæ¥æ¬èªã¯ã¾ã åå¼·ä¸ã§ããã¨çãã¦ããã®ãããã¯ããæ¥æ¬èªã§è©±ãã¾ããããã¨ãè¿äºããããã«ãªãã¾ããã Google Assistantã¨ã¯ãç±³Googleã2016å¹´5æã«éå¬ããéçºè ä¼è°ãGoogle I/Oãã§çºè¡¨ãã人工ç¥è½æ¡ç¨botã§ããæ¥æ¬ã§ã¯ä»ãã¡ãã»ã¼ã¸ã³ã°ã¢ããªã®ãAlloãã§ãã使ãã¾ããããç±³å½ã§çºå£²ãããã¹ãã¼ããã©ã³ã®ãPixelãã·ãªã¼ãºããé³å£°ã¢ã·ã¹ã¿ã³ãæ©è½æè¼ã®ç¡ç·ã¹ãã¼ã«ã¼ãGoogle Homeãã«ãæè¼ããã¦ãã¾ãã ç§ã¯ãPixelãGoogle Homeãæ¥æ¬ã§ã¾ã çºå£²ãããªãã®ã¯ããããã®ç®çæ©è½ã§ããGoogle Assistantãæ¥æ¬èªã«å¯¾å¿ãã¦ããªãããã ã¨æã£ã¦ãã¾ããã¤ã¾ããæ¥æ¬èªã«å¯¾å¿ããä»ãPixelã®æ¥æ¬çºå£²ã¯ããé ã
PM2.5äºæ¸¬æ å ±ã®æä¾ãç¶æããããã«å¯éãåéãã¦ãã¾ãï¼Webç³è¾¼å¯ï¼ â ãæ¡å SPRINTARSã®è§£èª¬ãæ¸ããã¦ããä¸è¬åãæ¸ç±ãç°å¸¸æ°è±¡ã¨æ°åå¤åã«ã¤ãã¦ããã£ã¦ãããã¨ããªããã¨ãçºå£²ä¸ Yahoo!ãã¥ã¼ã¹ ã¨ãã¹ãã¼ããå¤§æ°æ±æã¨æ°åå¤åãç§å¦ç解説ã SPRINTARS ã¨ã¯ SPRINTARS ã¯ï¼å¤§æ°ä¸ã®æµ®éç²åç¶ç©è³ªï¼ã¨ã¢ãã¾ã«ï¼ã«ããå°çè¦æ¨¡ã®æ°åå¤åããã³å¤§æ°æ±æã®ç¶æ³ãã³ã³ãã¥ã¼ã¿ã«ããåç¾ã»äºæ¸¬ããããã«éçºãããæ°å¤ã¢ãã«ï¼ã½ããã¦ã§ã¢ï¼ã§ãã SPRINTARS ã¯ï¼ä¹å·å¤§å¦å¿ç¨åå¦ç ç©¶ææ°åå¤åç§å¦åéãä¸å¿ã¨ãªãéçºãã¦ããï¼å¯¾æµåã«åå¨ããèªç¶èµ·æºã»äººçºèµ·æºã®ä¸»è¦ã¨ã¢ãã¾ã«ï¼é»è²çç´ ã»ææ©ç©ã»ç¡«é ¸å¡©ã»åå£ç²åã»æµ·å¡©ç²åï¼ãåãæ±ãã¾ãããããã¯ï¼ããããSPM, PM10, PM2.5ã¨ãã¦ãåé¡ããã¾ããSPRINTARSã§ã¯ï¼ã¨ã¢ãã¾ã«ã®è¼¸
ç·åçã¯ï¼ï¼ï¼ï¼å¹´ã¾ã§ã«ãå ¨å½ã®å ¬ç«å¦æ ¡ãèªæ²»ä½ãéå¶ããå ¬åãåç©é¤¨ãªã©ç´ï¼ä¸ãæã«å ¬è¡ç¡ç·ï¼¬ï¼¡ï¼®ãï¼·ï½âFï½ï¼ã¯ã¤ãã¡ã¤ï¼ããæ´åããæ¹éãåºããã ã¤ã³ã¿ã¼ããããç¡æã§ä½¿ããããã«ãã¦ãæ¥å¸¸ã§ã¯è¦³å ãæè²æ´»åã«ãç½å®³æã«ã¯é¿é£æ å ±ãå®å¦ç¢ºèªã®ããåãã«å½¹ç«ã¦ããï¼ï¼å¹´åº¦ããï¼å¹´éã§ç´ï¼ï¼ï¼ååãæå ¥ããéä¸çã«è¨ç½®ããè¨ç»ã ã æ´åããã®ã¯ãç½å®³æã®é¿é£å ´æã«æå®ããã¦ããå°ä¸é«æ ¡ãèªæ²»ä½ã®åºèãå ¬åãªã©ãå ¬ç«ã®åç©é¤¨ããéºè·¡ãªã©æå財ã対象ã«ããã ç½å®³çºçãªã©ã§å©ç¨è ãçæéã«éä¸ããã¨ãæºå¸¯é»è©±ä¼ç¤¾ã®åç·ã¯æ··éã§ã¤ãªããã«ãããªããï¼·ï½âFï½ã¯ãããç°å¢ãå®å®ãã¦ãããï¼æã®çæ¬å°éã®éãé¿é£æã§å®å¦æ å ±ã®ç¢ºèªãªã©ã«å¹æãçºæ®ããã 妿 ¡ãå ¬åãªã©ã«æ´åãããã¨ã§ãã¿ãã¬ãã端æ«ã§ææ¥ãããã観å å®¢ãæ¡å æ å ±ãæ¤ç´¢ããããããªã©ãæ¥å¸¸ã®ãããæ´»ç¨ãé²ããçãã ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}