LATTE3D generates high-quality textured meshes from text robustly in just 400ms by combining 3D priors, amortized optimization, and a second stage of surface rendering. Abstract: Recent text-to-3D generation approaches produce impressive 3D results but require time-consuming optimization that can take up to an hour per prompt. Amortized methods like ATT3D optimize multiple prompts simultaneously t
ChatRTX is a demo app that lets you personalize a GPT large language model (LLM) connected to your own contentâdocs, notes, images, or other data. Leveraging retrieval-augmented generation (RAG), TensorRT-LLM, and RTX acceleration, you can query a custom chatbot to quickly get contextually relevant answers. And because it all runs locally on your Windows RTX PC or workstation, youâll get fast and
Say What? Chat With RTX Brings Custom Chatbot to NVIDIA RTX AI PCs Chatbots are used by millions of people around the world every day, powered by NVIDIA GPU-based cloud servers. Now, these groundbreaking tools are coming to Windows PCs powered by NVIDIA RTX for local, fast, custom generative AI. Chat with RTX, now free to download, is a tech demo that lets users personalize a chatbot with their ow
NVIDIA Picasso ã¯ãä¼æ¥ãã½ããã¦ã§ã¢å¶ä½è ããµã¼ãã¹ ãããã¤ãã¼ãæ åã³ã³ãã³ãã®ããã«æå 端ã®çæ AI ã¢ãã«ãéçºããå®è£ ããããã® AI ãã¡ã¦ã³ã㪠ã§ããNVIDIA Picasso ãããã°ãåé¡ãªãåç¨å©ç¨ã§ã㦠NVIDIA DGX⢠Cloud ãããããã¤ã§ããæå 端ã®ãã¸ã¥ã¢ã«çæ AI ã¢ãã«ããã¬ã¼ãã³ã°ããããã«ã¹ã¿ãã¤ãºãããã§ãã¾ããã¾ããéçºè ã¯ç¬èªã®ã¢ãã«ãæã¡è¾¼ãã§ãç°¡å㪠API ã¯ã¼ã¯ããã¼ã使ã£ã¦ã·ã¼ã ã¬ã¹ã«æ¨è«ãå®è¡ãããã¨ãã§ãã¾ãã
5 MIN READ Pixar, Adobe, Apple, Autodesk, and NVIDIA Form Alliance for OpenUSD to Drive Open Standards for 3D Content The Linux Foundation | 01 August 2023 Alliance to Foster Global Collaboration for Universal Scene Description (USD). SAN FRANCISCO â Aug. 1, 2023 â Pixar, Adobe, Apple, Autodesk, and NVIDIA, together with the Joint Development Foundation (JDF), a part of the Linux Foundation family
NVIDIAã¨æ»è³å¤§å¦ã¯9æ8æ¥ããã¼ã¿ãµã¤ã¨ã³ã¹æè²ç¨ã®è¬ç¾©è³æãDLI ãã¼ã¿ãµã¤ã¨ã³ã¹æè²ããããã®æ¥æ¬èªçã®ç¡åæä¾ãå§ãããåè³æã¯NVIDIAã®ãã¸ã¿ã«ã¹ãã«è²æããã°ã©ã ãDeep Learning Instituteãï¼DLIï¼ã®è¬ç¾©è³æã§ãæ»è³å¤§å¦ãæ¥æ¬èªã«ç¿»è¨³ãããã®ãæè²æ©é¢ã®æå¡åãã«æä¾ãããå©ç¨ã«ã¯NVIDIAã®éçºè ã¢ã«ã¦ã³ããå¿ è¦ã è¬ç¾©è³æã§ã¯ããã¼ã¿ãµã¤ã¨ã³ã¹ã¨RAPIDSã®å ¥éãããã¼ã¿åéã¨åå¦çï¼ETLï¼ãããã¼ã¿ã»ããã«ããããã¼ã¿å«çã¨ãã¤ã¢ã¹ãããã¼ã¿çµ±åã¨åæãããã¼ã¿ãã¸ã¥ã¢ã©ã¤ã¼ã¼ã·ã§ã³ããHadoopãHiveãSparkã¨HBaseã«ããã¹ã±ã¼ã«ã¨åæ£ã³ã³ãã¥ã¼ãã£ã³ã°ããæ©æ¢°å¦ç¿ï¼åé¡ï¼ããæ©æ¢°å¦ç¿ï¼ã¯ã©ã¹ã¿ãªã³ã°ã次å åæ¸ï¼ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ããªã©ã®åéãåãä¸ããã è³æã®å ã«ãªã£ããDLI ãã¼ã¿ãµã¤ã¨ã³ã¹æè²ããã
Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU. Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write programs for physics simulation, perception, robotics, and geometry processing. In addition,
Neural gigapixel images Neural SDF NeRF Neural volume We demonstrate near-instant training of neural graphics primitives on a single GPU for multiple tasks. In gigapixel image we represent an image by a neural network. SDF learns a signed distance function in 3D space whose zero level-set represents a 2D surface. NeRF [Mildenhall et al. 2020] uses 2D images and their camera poses to reconstruct a
NVIDIAã«ããè²·åã失æããã°Armã¯æ¥ç¸¾ä½è¿·ãï¼ä¸¡ç¤¾ãè±å½ã»ç«¶äºå¸å ´åºã«åè«ï¼1/2 ãã¼ã¸ï¼ è±å½æ¿åºå½å±ãç¾å¨é²ãã¦ãããNVIDIAã®Armè²·åã«é¢ãã調æ»ã®ä¸ç°ã¨ãã¦çºè¡¨ããææ¸ã«ããã¨ãããNVIDIAã«ããè²·åææ¡ã失æã«çµãã£ãå ´åãArmã¯ã¹ã¿ã³ãã¢ãã³ä¼æ¥ã¨ãã¦æé·ãã¦ããä¸ã§ãé大ãªéå£ã«ç´é¢ãããã¨ã«ãªãã¨ããã è±å½æ¿åºå½å±ãç¾å¨é²ãã¦ãããNVIDIAã®Armè²·åã«é¢ãã調æ»ã®ä¸ç°ã¨ãã¦çºè¡¨ããææ¸ã«ããã¨ãããNVIDIAã«ããè²·åææ¡ã失æã«çµãã£ãå ´åãArmã¯ã¹ã¿ã³ãã¢ãã³ä¼æ¥ã¨ãã¦æé·ãã¦ããä¸ã§ãé大ãªéå£ã«ç´é¢ãããã¨ã«ãªãã¨ããã 29ãã¼ã¸ã«åã¶ãã®ææ¸ã¯ãè±å½æ¿åºã2021å¹´11æã«è±å½ã®ç«¶äºå¸å ´åºï¼CMAï¼Competition and Markets Authorityï¼ã«ãããªã調æ»ã®å®æ½ãæ示ãããã¨ã«å¯¾ããArmï¼NVIDIAã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}