時間領域
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/03/21 01:09 UTC 版)
時間領域(じかんりょういき、英: Time domain)とは、数学的関数、物理的信号、経済学や環境統計のデータ等の時間についての解析を意味する用語である。
|
|
- ^ Lee, Y. W.; Cheatham, T. P., Jr.; Wiesner, J. B. (1950). “Application of Correlation Analysis to the Detection of Periodic Signals in Noise”. Proceedings of the IRE 38 (10): 1165–1171. doi:10.1109/JRPROC.1950.233423.
- 1 時間領域とは
- 2 時間領域の概要
時間領域
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/08/26 13:03 UTC 版)
虚時間区間(0,β)で定義される関数G(τ)を考える。 これはフーリエ級数の観点で与えられる。 G ( τ ) = 1 β ∑ i ω G ( i ω ) e − i ω τ , {\displaystyle G(\tau )={\frac {1}{\beta }}\sum _{i\omega }G(i\omega )e^{-i\omega \tau },} ここで振動数は 2π/β間隔の離散的な値のみとる。 振動数の選択は、関数G(τ)の境界条件に依存している。 物理学ではG(τ)はグリーン関数の虚時間表現を表す。 G ( τ ) = − ⟨ T τ ψ ( τ ) ψ ∗ ( 0 ) ⟩ . {\displaystyle G(\tau )=-\langle {\mathcal {T}}_{\tau }\psi (\tau )\psi ^{*}(0)\rangle .} これはボソン場の周期的境界条件G(τ+β)=G(τ)を満たす。 一方フェルミオン場では、境界条件は反周期的G(τ + β) = −G(τ)である。 振動数領域でのグリーン関数G(iω)が与えられたとき、その虚時間表現G(τ)は松原振動数の和によって評価できる。 その和がボソン振動数かフェルミオン振動数のどちらでとるかに依存して、得られるG(τ)は異なる。 これらを区別するため、次を定義する。 G η ( τ ) = { G B ( τ ) , if η = + 1 , G F ( τ ) , if η = − 1 , {\displaystyle G_{\eta }(\tau )={\begin{cases}G_{B}(\tau ),&{\text{if }}\eta =+1,\\G_{F}(\tau ),&{\text{if }}\eta =-1,\end{cases}}} G B ( τ ) = 1 β ∑ i ω n G ( i ω n ) e − i ω n τ , {\displaystyle G_{B}(\tau )={\frac {1}{\beta }}\sum _{i\omega _{n}}G(i\omega _{n})e^{-i\omega _{n}\tau },} G F ( τ ) = 1 β ∑ i ω m G ( i ω m ) e − i ω m τ . {\displaystyle G_{F}(\tau )={\frac {1}{\beta }}\sum _{i\omega _{m}}G(i\omega _{m})e^{-i\omega _{m}\tau }.} ここでτは区間(0,β)に制限されていることに注意。 境界条件は区間の外にG(τ)を拡張するために用いることができる。 よく用いられる結果を以下の表にまとめる。 G ( i ω ) {\displaystyle G(i\omega )} G η ( τ ) {\displaystyle G_{\eta }(\tau )} ( i ω − ξ ) − 1 {\displaystyle (i\omega -\xi )^{-1}} − e ξ ( β − τ ) n η ( ξ ) {\displaystyle -e^{\xi (\beta -\tau )}n_{\eta }(\xi )} ( i ω − ξ ) − 2 {\displaystyle (i\omega -\xi )^{-2}} e ξ ( β − τ ) n η ( ξ ) ( τ + η β n η ( ξ ) ) {\displaystyle e^{\xi (\beta -\tau )}n_{\eta }(\xi )\left(\tau +\eta \beta n_{\eta }(\xi )\right)} ( i ω − ξ ) − 3 {\displaystyle (i\omega -\xi )^{-3}} − 1 2 e ξ ( β − τ ) n η ( ξ ) ( τ 2 + η β ( β + 2 τ ) n η ( ξ ) + 2 β 2 n η 2 ( ξ ) ) {\displaystyle -{\frac {1}{2}}e^{\xi (\beta -\tau )}n_{\eta }(\xi )\left(\tau ^{2}+\eta \beta (\beta +2\tau )n_{\eta }(\xi )+2\beta ^{2}n_{\eta }^{2}(\xi )\right)} ( i ω − ξ 1 ) − 1 ( i ω − ξ 2 ) − 1 {\displaystyle (i\omega -\xi _{1})^{-1}(i\omega -\xi _{2})^{-1}} − e ξ 1 ( β − τ ) n η ( ξ 1 ) − e ξ 2 ( β − τ ) n η ( ξ 2 ) ξ 1 − ξ 2 {\displaystyle -{\frac {e^{\xi _{1}(\beta -\tau )}n_{\eta }(\xi _{1})-e^{\xi _{2}(\beta -\tau )}n_{\eta }(\xi _{2})}{\xi _{1}-\xi _{2}}}} ( ω 2 + m 2 ) − 1 {\displaystyle (\omega ^{2}+m^{2})^{-1}} e − m τ 2 m + η m cosh m τ n η ( m ) {\displaystyle {\frac {e^{-m\tau }}{2m}}+{\frac {\eta }{m}}\cosh {m\tau }\;n_{\eta }(m)} i ω ( ω 2 + m 2 ) − 1 {\displaystyle i\omega (\omega ^{2}+m^{2})^{-1}} e − m τ 2 − η sinh m τ n η ( m ) {\displaystyle {\frac {e^{-m\tau }}{2}}-\eta \,\sinh {m\tau }\;n_{\eta }(m)}
※この「時間領域」の解説は、「松原振動数」の解説の一部です。
「時間領域」を含む「松原振動数」の記事については、「松原振動数」の概要を参照ください。
- 時間領域のページへのリンク