ãæãå
¥åããã¨æ¥ãè¿ãå¤é
å¼ãã®è©±ããTwitterã®ã¿ã¤ã ã©ã¤ã³ä¸ã§è©±é¡ã«ãªãã¾ããã
togetter.com
ã©ããªè©±é¡ãã¨ããã¨ãå¤é å¼ ã以ä¸ã®ããã«å®ç¾©ããã¨ã
ãã® ã« ãä»£å ¥ããã¨ã
ã¨ãªããæãå ¥åããã¨æ¥ãè¿ãå¤é å¼ã«ãªã£ã¦ãã¾ãï¼ãããï¼
ãããªå¤é å¼ããã£ããã©ããã£ã¦æ±ãããã ãããã¨ãæ°ã«ãªã£ãããã¯ããããããªããã¨æãã¾ãã
ããã«ã¤ãã¦ã¯ ä¸å½å°ä½å®ç ã使ããã¨ãããã¨ããIwao KIMURA ( @iwaokimura ) ãããã以ä¸ã®ãã¤ã¼ãã§æãã¦ãã ããã¾ããã
æãå ¥åããã¨æ¥ãè¿ãå¤é å¼ï¼ä¸å½ã®å°ä½å®çã®ããä¾ã§ããï¼sagemathã ã¨ã³ãã³ãä¸çºï¼ pic.twitter.com/F15nosE2ia
— Iwao KIMURA (@iwaokimura) 2018å¹´10æ21æ¥
ä¸å½å°ä½å®çã¯ç§ã®å¥½ããªå®çã®ä¸ã¤ã§ããããã®ãããªå¿ç¨ããããã¨ã¯ã¾ã£ããç¥ãã¾ããã§ããã
ã¨ã¦ãèå³æ·±ã話ã ã£ãã®ã§ãçå±ãèªåã§ãèãã¦ã¿ã¾ãããä»æ¥ã¯ãããç´¹ä»ãããã¨æãã¾ãã
ããããä¸å½å°ä½å®çã¨ã¯
ãããªåé¡ãèãããã¨ã¯ããã¾ãããï¼
3ã§å²ãã¨2ä½ãã5ã§å²ãã¨3ä½ãã7ã§å²ãã¨2ä½ãæ°ã¯ä½ã
çãã®ä¸ã¤ãããã㨠23 ã§ãã
å®éã ã¨ããã¨
ãæãç«ã¡ã¾ããã
å®ã¯ã ã§ããã°ã ã¯ä¸ã®ï¼ã¤ã®ååå¼ãæºããã¾ãããããä¸ã®åé¡ã®ãã¹ã¦ã®è§£ã¨ãªãã¾ãããªãã ã§ãã
ä¸è¬ã«ã ãããããäºãã«ç´ 㪠åã®æ£æ´æ°ã¨ããã¨ã
ãæºããæ´æ° 㯠ã®ç¯å²ã§è§£ãæã¡ããã®è§£ã¯ä¸æã«å®ã¾ãã¾ããããã ä¸å½å°ä½å®ç ã§ãã
ãä¸å½å°ä½å®çãã¨ããä¸é¢¨å¤ãã£ãååãã¤ãã¦ãã¾ããããã®ååã¯ä¸å½ã®ç®è¡æ¸ãå«åç®çµãã«ç±æ¥ãã¾ãããã®æ¬ã«ã3ã§å²ãã¨2ä½ããã»ã»ã»ãã®åé¡ã¨ãã®è§£æ³ãè¼ã£ã¦ããã¨ãããã¨ã§ãã
ä¸å½å°ä½å®çã§ä¸æã«å®ã¾ã解ããå ·ä½çã«ãè¨ç®ããé¢æ°ã sagemath ã«ããã¾ãã
å®éãå
ã»ã©ã®åé¡ã®å¼ ãå
ã«è¨ç®ããéã¯
CRT([2, 3, 2], [3, 5, 7])
ã¨æã¡è¾¼ãã§ã¿ã¦ãã ãããã¡ãã㨠23 ã¨ããçããè¿ã£ã¦ããã¨æãã¾ãã
"CRT" ã¯ä¸å½å°ä½å®çã®è±èªå "Chinese Remainder Theorem" ã®é æåãã¨ã£ããã®ã§ããã
å¤é å¼ç°ã®ä¸å½å°ä½å®ç
å ã»ã©ã¯ä¸å½å°ä½å®çããæ´æ°ç°ãã¨ããç¹æ®ãªç¶æ³ã§èãã¾ãããå®ã¯ãä¸å½å°ä½å®çèªä½ã¯ãä¸è¬ã®ç°ã«å¯¾ãã¦ãæãç«ã¤ãã¨ãç¥ããã¦ãã¾ãã
å¤é å¼ç°ã§ä¸å½å°ä½å®çãç¨ããã¨ãåé ã®11次ã®å¤é å¼ãæ±ãããã¨ãã§ãã¾ããã©ããããã¨ããé ã追ã£ã¦èª¬æãã¾ãããã
é«æ ¡ã®ã¨ãã«ç¿ã£ãããã«ãå¤é å¼ ã ãæºããã¨ã
ãæãç«ã¡ã¾ãããã㧠ã¯å¤é å¼ã§ããå¼ ãæãç«ã¤ãã¨ã¯ã ãä»£å ¥ããã°ãã ã¡ã«ç¢ºèªã§ãã¾ãã
å¼ ã¯æ¬¡ã®ããã«è§£éãããã¨ãã§ãã¾ãã
å¤é å¼ ã ã§å²ã£ãä½ã㯠ã§ããã
ãã®ããã«ãã¦å¤é å¼ã«ããã¾ããã¨ããæ¦å¿µãå°å ¥ããã¾ãã
以ä¸ã®ããã«èãã㨠ã¨ããå¼ã¯ãã ã ã§å²ã£ããã¾ãã 31 ã§ãããã¨è¨ãæãããã¨ãã§ãã¾ãã
ä¸å½å°ä½å®çã®ç¶æ³ã«è¿ã¥ãã¦ãã¾ããã
ã¤ã¾ããåé ã®ãæãå ¥åããã¨æ¥ãè¿ãå¤é å¼ããä¸ããåé¡ã¯
ãåæã«æºãã ãæ±ãããã¨ããåé¡ã ã£ãã¨ããããã§ãã
å¤é å¼ç°ã®ä¸å½å°ä½å®çã«ããã¨ããã®ãã㪠ã¯åå¨ãã¾ãã
å®éãsagemathã使ã£ã¦ ãè¨ç®ãããã¨ãã§ãã¾ãã
R.<x> = QQ[] f = CRT([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31], [x-1, x-2, x-3, x-4, x-5, x-6, x-7, x-8, x-9, x-10, x-11, x-12]); f
ä¸è¡ç®ã¯ãå¤é å¼ç° ã¨ã㦠ãæå®ãã¦ãã¾ããæçæ°ä¿æ°ã®å¤é å¼ç°ã§ãããããã¦ãå¤é å¼ç°ã®å¤æ°ã ã¨æå®ãã¦ãã¾ãããã®è¾ºã¯ãã¸ãããããã£ã¦æ¸ãã®ããã¨æã£ã¦ããã ããã°ååã§ãã
次ã®è¡ãã¡ã¤ã³ã§ããCRTé¢æ°ã®ï¼ã¤ç®ã®å¤æ°ã«
[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
ã®ããã«ãã¾ãã®æ å ±ã12å並ã¹ã¦ãã¾ãã
CRTé¢æ°ã®ï¼ã¤ç®ã®å¤æ°ã«ã¯ã対å¿ãã ã並ã¹ã¾ãã
[x-1, x-2, x-3, x-4, x-5, x-6, x-7, x-8, x-9, x-10, x-11, x-12]
ãããã®å¤æ°ã CRT([...], [...]) ã«å ¥ãã¦ãçµæãå¤æ° f ã«æ ¼ç´ã㦠f ãåºåãã¦ãã¾ãã
ããã«ãã£ã¦ãæ±ããå¤é å¼ãè¨ç®ãããã¨ãã§ãã¾ããå®éã«å ã®ã³ãã³ããæã¡è¾¼ãã¨ã次ã®çµæãè¿ã£ã¦ããã¯ãã§ãã
-11/907200*x^11 + 163/181440*x^10 - 37/1260*x^9 + 13481/24192*x^8 - 2055371/302400*x^7 + 240683/4320*x^6 - 28268521/90720*x^5 + 85774775/72576*x^4 - 446998571/151200*x^3 + 46351537/10080*x^2 - 221017/56*x + 1416
ãããã«ãåé ã®å¤é
å¼ ã«ãªã£ã¦ãã¾ããï¼ãããï¼
ãããã¡ããã¨ãæ¥ãè¿ãå¤é å¼ãã«ãªã£ã¦ãããã¨ã¯ä»¥ä¸ã®ããã«ç¢ºèªã§ããã§ãããã
f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10) f(11) f(12)
çµæã¯æ¬¡ã®ããã«ãªãã¯ãã§ãããã²ç¢ºããã¦ã¿ã¦ãã ããã
31 28 31 30 31 30 31 31 30 31 30 31
ç§ã®å¥½ããªä¸å½å°ä½å®çããã®ãããªå½¢ã§å½¹ã«ç«ã¤ã¨ãããã¨ãé¢ç½ãã£ãã§ãï¼
楽ãã話é¡ããããã¨ããããã¾ããï¼
ç°¡åã§ãããä»æ¥ã¯ãã®è¾ºã§ã
ãã¾ã
ä¸å½å°ä½å®çã¯ãã«ãã¼ã¤æ°ãè¨ç®ããã®ã«ãå½¹ã«ç«ã¡ã¾ãï¼