コンピュートへの大規模な投資が注目される一方で、アルゴリズムの進歩も同様に重要な進歩の原動力であると思われる(そして、これまで劇的に過小評価されてきた)。
アルゴリズムの進歩がどれほど大きな意味を持つかを理解するために、MATHベンチマーク(高校生の競技用数学)において、わずか2年間で~50%の精度を達成するために必要な価格が下がったことを示す次の図を考えてみてください。(比較のために、数学が特に好きではないコンピュータサイエンスの博士課程の学生が40%のスコアを出したので、これはすでにかなり良いことです)。推論効率は2年足らずで3OOMs-1,000倍近く向上した。
https://situational-awareness.ai/wp-content/uploads/2024/06/math_inference_cost-1024x819.png
これは推論効率だけの数字だが(公開データから推論するのが難しいトレーニング効率の向上と一致するかどうかはわからない)、アルゴリズムの進歩は非常に大きく、また実際に起こっている。
この記事では、アルゴリズムの進歩を2種類に分けて説明します。まず、「パラダイム内」でのアルゴリズムの改良を取り上げることにしま す。例えば、より優れたアルゴリズムによって、同じパフォーマンスを達成しながら、トレーニングの計算量を10倍減らすことができるかもしれません。その結果、有効計算量は10倍(1OOM)になります。(後ほど「アンホブリング」を取り上げますが、これはベースモデルの能力を解き放つ「パラダイム拡張/アプリケーション拡張」的なアルゴリズムの進歩と考えることができます)。
一歩下がって長期的な傾向を見ると、私たちはかなり一貫した割合で新しいアルゴリズムの改良を発見しているようです。しかし、長期的なトレンドラインは予測可能であり、グラフ上の直線である。トレンドラインを信じよう。
アルゴリズム研究がほとんど公開されており、10年前にさかのぼるデータがある)ImageNetでは、2012年から2021年までの9年間で、計算効率が一貫して約0.5OOM/年向上しています。
アルゴリズムの進歩を測定することができます。同じ性能のモデルを訓練するために必要な計算量は、2012年と比較して2021年にはどれくらい少なくなっているのでしょうか?その結果、アルゴリズムの効率は年間0.5 OOMs/年程度向上していることがわかります。出典Erdil and Besiroglu 2022.
これは非常に大きなことです。つまり、4年後には、~100倍少ない計算量で同じ性能を達成できるということです(同時に、同じ計算量ではるかに高い性能も達成できます!)。
残念ながら、研究室はこれに関する内部データを公表していないため、過去4年間のフロンティアLLMのアルゴリズムの進歩を測定することは難しい。EpochAIは、言語モデリングに関するImageNetの結果を再現した新しい研究を行っており、2012年から2023年までのLLMのアルゴリズム効率のトレンドは、同様に~0.5OOM/年であると推定しています。(しかし、これはエラーバーが広く、また、主要なラボがアルゴリズム効率の公表を停止しているため、最近の上昇を捕捉していません)。
https://situational-awareness.ai/wp-content/uploads/2024/06/llm_efficiency_epoch-1-1024x711.png
Epoch AIによる言語モデリングにおけるアルゴリズム効率の推定。この試算によると、私たちは8年間で~4OOMの効率向上を達成したことになります。
より直接的に過去4年間を見ると、GPT-2からGPT-3は基本的に単純なスケールアップでした(論文によると)が、GPT-3以降、公に知られ、公に干渉可能な多くの利益がありました:
最近リリースされたGemini 1.5 Flashは、"GPT-3.75レベル "とGPT-4レベルの間の性能を提供する一方で、オリジナルのGPT-4よりも85倍/57倍(入力/出力)安い(驚異的な利益!)。
公開されている情報を総合すると、GPT-2からGPT-4へのジャンプには、1-2 OOMのアルゴリズム効率向上が含まれていたことになります。
https://situational-awareness.ai/wp-content/uploads/2024/06/stacked_compute_algos-1024x866.png
GPT-4に続く4年間はこの傾向が続くと予想され、2027年までに平均0.5OOMs/年の計算効率、つまりGPT-4と比較して~2OOMsの向上が見込まれます。計算効率の向上は、低空飛行の果実を摘み取るようになるにつれて難しくなる一方、新たなアルゴリズムの改良を見出すためのAIラボの資金と人材への投資は急速に増加しています。 (少なくとも、公開されている推論コストの効率化は、まったく減速していないようだ)。ハイエンドでは、より根本的な、トランスフォーマーのようなブレークスルーが起こり、さらに大きな利益が得られる可能性さえある。
これらをまとめると、2027年末までには(GPT-4と比較して)1~3OOMのアルゴリズム効率向上が期待できることになります。
続き I.GPT-4からAGIへ:OOMを数える(6) https://anond.hatelabo.jp/20240605205754
繰り返しになるが、非常に賢いChatGPTを想像するだけではいけない。趣味的な進歩ではなく、リモートワーカーや、推論や計画、エラー訂正ができ、あなたやあなたの会社のことを何でも...
3.コンピュータの使用 これはおそらく3つの中で最も簡単な方法だ。現在のChatGPTは、基本的に、テキストを入力できる孤立した箱の中に座っている人間のようなものだ。初期のアンホブ...
チャットボットからエージェント兼同僚へ 今後数年間の野心的なアンホブリングはどのようなものになるのでしょうか?私が考えるに、3つの重要な要素がある: 1."オンボーディング...
アンホブリング 最後に、定量化するのが最も難しいが、それに劣らず重要な改善のカテゴリーを紹介しよう。 難しい数学の問題を解くように言われたとき、頭に浮かんだことを即座に...
データの壁 これらすべての重要な変動要因になりうるものがあります。つまり、より多くのスクレイピング・データでより大きな言語モデルをプリ・トレーニングするという素朴なア...
アルゴリズムの効率化 コンピュートへの大規模な投資が注目される一方で、アルゴリズムの進歩も同様に重要な進歩の原動力であると思われる(そして、これまで劇的に過小評価され...
OOMを数える どうしてこうなった?ディープラーニングの魔法は、それがただ機能するということであり、あらゆる場面で否定的な意見にもかかわらず、その傾向線は驚くほど一貫して...
ディープラーニングのトレンド 過去10年間のディープラーニングの進歩のペースは、まさに驚異的だった。ほんの10年前、ディープラーニング・システムが単純な画像を識別することは...
この4年間 私たちは今、基本的に人間のように会話できるマシンを手にしている。これが普通に思えるのは、人間の適応能力の驚くべき証であり、私たちは進歩のペースに慣れてしまっ...
X (twitter) で SITUATIONAL AWARENESS: The Decade Ahead https://situational-awareness.ai/ というのが回ってきて非常に示唆に富むものだったので、DeepL (無料版 API経由) で訳してみた。 レオポルド・アッシェ...
2027年までにAGIが実現する可能性は極めて高い。GPT-2からGPT-4までの4年間で、私たちは〜未就学児から〜賢い高校生までの能力を手に入れた。計算能力(~0.5桁またはOOMs/年)、アルゴリズ...