C#ããIronPythonãå¼ã³åºãããã«ã調ã¹ã¦ããéã«ã¯ã¾ã£ããã¨ãã¡ã¢ã ç°¡åãªã¹ã¯ãªãããã¡ã½ãããªãå¼ã³åºããã®ã§ããimport numpyãimport waveãªã©ã使ç¨ãã㨠ä¸è¨ã®ãããªã¨ã©ã¼ãã»ã»ã» ã¡ãã»ã¼ã¸å 容ãè¦ã㨠IronPython.Runtime.Exceptions.ImportException ã¯ãã³ãã«ããã¾ããã§ããã Message=No module named numpy ã¨ã®ãã¨ã DLLã®ãã¼ããã§ãã¦ããªããããªã®ã§ããã ä»ã®ãµã¤ãã§ã¯é£æºã®éã«ä¸è¨ç¾è±¡ã®è¨è¼ããªãæ¹ãããã£ãããããã§ãã®ã¸ãã¯è¬ã§ãã ã¨ã©ã¼ã®åå ã¯ãIronPythonã§ãã¼ããã§ãã¦ããªãããã§ãã 強調ãããç®æã追å ãããã¨ã«ãã£ã¦å®è¡ãã§ããããã«ãªãã¾ããã #ãã£ã¨ããææ³ãããããªæ°ããã¾ããã調ã¹ã¦ãåºã¦ããªãã®ã§ããã ã½ã¼ã¹ã¯ä»¥ä¸ã®ãã
ããã¾ã§ãR ã§æç³»åè§£æãè¡ã£ã¦ããã®ã§ãPython ã§ãã§ããããæç¿ãã¾ã§ãã³ã¼ããæã§æã£ã¦ã¿ãã 1. ã©ã³ãã ã»ã¦ã©ã¼ã¯ 㨠移åå¹³åç· æç³»åãã¼ã¿çæï¼ã©ã³ãã ã¦ã©ã¼ã¯ç³»åï¼ ï¼åèï¼ åææè¡ã¨ãã¸ãã¹ã¤ã³ããªã¸ã§ã³ã¹ ãPythonï¼æç³»ååæï¼ãã®ï¼ï¼ã ä¸è¨ãµã¤ãããã¹ã¯ãªãããåç¨ãã¾ã ï¼â» plt.show() ãæå¾ã«è¿½å ï¼ import numpy as np randn = np.random.randn from pandas import * import matplotlib.pyplot as plt #â ã©ã³ãã ã¦ã©ã¼ã¯ç³»åãã¼ã¿ã®ä½æ ts = Series(randn(1000), index = DateRange('2000/1/1', periods = 1000)) ts = ts.cumsum() #â åç´ç§»åå¹³å é·çã®ãã¬ã³
ç»åå¦çãè¡ã£ã¦ãã¦ãç¹å¾´éæ½åºã« scikit-learn ã® PCA ã使ãã¾ããããæ§ã ãªå¦çãè¡ã£ãå¾ãã®çµæããç»åã復å ãããï¼åèï¼ãããpythonã§ããããï¼ï¼R prcomp ã§ã®ä¸»æååæçµæããå ãã¼ã¿ã復å ããï¼ã å ·ä½çã«ã¯ä»¥ä¸ã®ãããªã³ã¼ãã«ãªã£ã¦ãã¾ãã from sklearn.decomposition import PCA from PIL import Image import numpy as np # loading image and convert to gray-scale imgAry = np.asarray(Image.open('image.png').convert('L')) print imgAry.shape # (224, 224) # doing pca decomposition pca = PCA(n_compone
妿 ¡ã®ææ¥ãè³æ ¼ã®ãã¹ãã§ã¯ããæ£è¦åå¸ããã¦ããããã¨ãåæã«ãæ¤å®ãæ¨å®ãè¡ããããã¨ãå¤ãã§ãããã ããããå®éã«èªåã§ãã¼ã¿ãã¨ã£ã¦åæããæã¯ãå½ç¶ã§ãã誰ããã®ãã¼ã¿é¡ããæ£è¦åå¸ããã¦ãããã¨ã¯ä¿è¨¼ãã¦ãããªãããã§ãã ãã®ããããã¼ã¿è§£æãå§ãããã®åã«ãæ£è¦æ§ã®æ¤å®ï¼æ£è¦åå¸ãã¦ãããã©ããã®ç¢ºèªï¼ããããªããã°ãªãã¾ããã ä»åã¯ãæ£è¦åå¸ãã©ãããè¦æ¥µããããã®æ¤å®ã¨ææ³ããPythonãç¨ãã¦ãã£ã¦ããããã¨æãã¾ãã æ³¨)* æ¨æºåå·®ã»ãã¹ãã°ã©ã ãªã©ãçè§£ãã¦ããªãåå¦è ã®æ¹ã¯ã¾ããã¡ãããåç §ãããã¨ããããããã¾ãã www.ie-kau.net ç®æ¬¡ï¼æ£è¦åå¸ãã©ããè¦æ¥µããæé ã¾ãã¯ãµã³ãã«ãã¼ã¿ã®ä½æãã ãã¹ãã°ã©ã ã¨QQããããã§è¦è¦çã«ç¢ºèªãã æ³åã使ã£ã¦æ£è¦æ§ãæ¤å®ãã 1. ã¾ãã¯ãµã³ãã«ãã¼ã¿ã®ä½æãã ãã¼ã¿ããã£ãã»ãããããã
æ¦è¦ Python ã§æ¥æ/ã¿ã¤ã ã¹ã¿ã³ãé¢é£ã®æä½ãããå ´å㯠dateutil ã arrow ã使ã£ã¦ãã人ãå¤ãã¨æããã pandas ã§ããããã£ãå¦çãããããããæ¸ããããã¨ãã話ã pandas ã®æ¬é ã¯å¤æ¬¡å ãã¼ã¿ã®èç©/å¤å½¢/éç´å¦çã«ããããæ¥ææä½ã«é¢é£ããå¼·åãªã¡ã½ãã / ã¦ã¼ãã£ãªãã£ãããã¤ãæã£ã¦ãããä»å㯠ãããã使ã£ã¦æ¥ææä½ãç°¡åã«è¡ãæ¹æ³ãæ¸ãã¦ããã¨ãããã¨ã§ DataFrame ã Series ãã§ã¦ããªã pandas è¨äºã®ã¯ãã¾ãã â» ããã§ãã "æ¥æ/ã¿ã¤ã ã¹ã¿ã³ãé¢é£ã®æä½" ã¯æååãã¼ã¹ãæ¥æå ç®/æ¸ç®ãã¿ã¤ã ã¾ã¼ã³è¨å®ãæ¡ä»¶ã«åè´ããæ¥æã®ãªã¹ãçæãªã©ãæ³å®ãæç³»åè£é/ãªãµã³ããªã³ã°ãªããã¯ã¾ãè¨å¤§ã«ãªãã®ã§å¥éã ã¤ã³ã¹ãã¼ã« 以ä¸ãµã³ãã«ã«ã¯ 0.15ã§ã®è¿½å æ©è½ãå«ã¾ããããã0.15 以éãå¿ è¦ã pip
1.5. Scipy: 髿°´æºã®ç§å¦æè¡è¨ç®Â¶ èè : Adrien Chauve, Andre Espaze, Emmanuelle Gouillart, Gaël Varoquaux, Ralf Gommers Scipy scipy ããã±ã¼ã¸ã¯ç§å¦æè¡è¨ç®ã§ã®å ±éã®åé¡ã®ããã®å¤æ§ãªãã¼ã«ããã¯ã¹ãããã¾ãããµãã¢ã¸ã¥ã¼ã«æ¯ã«å¿ç¨ç¯å²ãç°ãªã£ã¦ãã¾ããå¿ç¨ç¯å²ã¯ä¾ãã°ãè£å®ãç©åãæé©åãç»åå¦çãçµ±è¨ãç¹æ®é¢æ°çã scipy 㯠GSL (GNU Scientific Library for C and C++) ã Matlab ã®ãã¼ã«ããã¯ã¹ã®ãããªä»ã®æ¨æºçãªç§å¦æè¡è¨ç®ã©ã¤ãã©ãªã¨æ¯è¼ããã¾ãã scipy 㯠Python ã§ã®ç§å¦æè¡è¨ç®ã«ã¼ãã³ã®ä¸æ ¸ã¨ãªãããã±ã¼ã¸ã§ã; ãã㯠numpy ã®é åãå¹çè¯ãæ±ã£ã¦ããã¨ãããã¨ã§ãnumpy 㨠scipy ã¯
Pythonã§ä¸çªæåã§æ®åãã¦ããã©ã¤ãã©ãªã¨è¨ã£ã¦ãéè¨ã§ã¯ãªããNumpyãã®è¦æ¸ãã§ããããªã夿©è½ãªæ°å¤è¨ç®ã©ã¤ãã©ãªã§ãå é¨ã¯Cè¨èªã§è¨è¿°ããã¦ããããè¶ é«éã«åä½ãã¾ãã ãã¯ãã« ãã¯ãã«ã®é·ãï¼æ£è¦å import numpy a = numpy.array([[2,2]]) #ãã¯ãã«ã®é·ã length = numpy.linalg.norm(a) #length=>2.8284271247461903 #ãã¯ãã«ã®æ£è¦å a / numpy.linalg.norm(a) #=>array([[ 0.70710678, 0.70710678]]) å ç©ï¼å¤ç© import numpy v1 = numpy.array((1,0,0)) v2 = numpy.array((0,1,0)) #å ç© numpy.dot(v1,v2) #=> 0 #å¤ç© numpy.cros
NumPy é åã®åºç¤Â¶ ããã§ã¯ï¼NumPy ã§æãéè¦ãªã¯ã©ã¹ã§ãã np.ndarray ã«ã¤ãã¦ï¼ æ¬ãã¥ã¼ããªã¢ã«ã®æ¹é ã®æ¹éã«å¾ãï¼æä½éå¿ è¦ãªäºåç¥èã«ã¤ãã¦èª¬æãã¾ãï¼ np.ndarray ã¯ï¼ N-d Array ããªãã¡ï¼N次å é åãæ±ãããã®ã¯ã©ã¹ã§ãï¼ NumPy ã使ããªãå ´åï¼ Python ã§ã¯ããããN次å é åã表ç¾ããã«ã¯ï¼å¤éã®ãªã¹ããå©ç¨ããã¾ãï¼ np.ndarray ã¨å¤éãªã¹ãã«ã¯ä»¥ä¸ã®ãããªéããããã¾ãï¼ å¤éãªã¹ãã¯ãªã³ã¯ã§ã»ã«ãçµåããå½¢å¼ã§ã¡ã¢ãªä¸ã«ä¿æããã¾ããï¼ np.ndarray 㯠C ã Fortran ã®é åã¨åæ§ã«ã¡ã¢ãªã®é£ç¶é åä¸ã«ä¿æããã¾ãï¼ ãã®ããï¼å¤éãªã¹ãã¯åçã«å¤æ´å¯è½ã§ããï¼ np.ndarray ã®å½¢ç¶å¤æ´ã«ã¯å ¨ä½ã®åé¤ã»åçæãå¿ è¦ã«ãªãã¾ãï¼ å¤éãªã¹ãã¯ãªã¹ãå ã§ãã®è¦ç´ ã®åãç°ãªããã¨ã許
# åæï¼http://www.scipy.org/Tentative_NumPy_Tutorial ãã®ãã¥ã¼ããªã¢ã«ãèªãåã«ãPythonã«ã¤ãã¦ã¡ãã£ã¨ã¯ç¥ã£ã¦ããã¹ãã ãè¨æ¶ããªãã¬ãã·ã¥ãããã¨æããªããPythonãã¥ã¼ããªã¢ã«ãè¦ã¦ãããããã ãã®ãã¥ã¼ããªã¢ã«ã«åºã¦ããä¾ã試ããããªããããªãã®PCã«å°ãªãã¨ã Python NumPy ã¯ã¤ã³ã¹ãã¼ã«ããã¦ããã¹ãã§ãä»ã«å ¥ã£ã¦ãã¨ä¾¿å©ãªã®ã¯ï¼ ipython ã¯æ¡å¼µãããã¤ã³ã¿ã©ã¯ãã£ããªPythonã·ã§ã«ã§ãNumPyã®æ©è½ãæ¢æ¤ããã®ã«ã¨ã¦ãä¾¿å© matplotlib ãããã¨å³è¡¨ã®æç»ãå¯è½ã«ãªã SciPy ã¯NumPyã®ä¸ã§åãç§å¦è¨ç®ã«ã¼ãã³ãæ²¢å±±ç¨æãã¦ããã åºç¤ NumPy ã®ä¸»è¦ãªãªãã¸ã§ã¯ãã¯ãåãåï¼æ®éã¯æ°ï¼ã®è¦ç´ ã®ã¿ããæããæ£ã®æ´æ°ã®ã¿ãã«ã§æ·»åä»ãããããå質ãªãã¼ãã«ï¼ã¨ããã夿¬¡å
Prerequisites� Before reading this tutorial you should know a bit of Python. If you would like to refresh your memory, take a look at the Python tutorial. If you wish to work the examples in this tutorial, you must also have some software installed on your computer. Please see http://scipy.org/install.html for instructions. The Basics� NumPyâs main object is the homogeneous multidimensional array.
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã¡ã³ããã³ã¹
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}