ãã¢ãããªã³æ°ããã«ã¼ã ãã¼ã°è«èª¬ã§ãçµæ¸å¦è ã大ä¸æ³ãäºæ¸¬ã§ããªãã£ããã¨ããåé¡ã取り上げているã
Macroeconomists typically respond that forecasting isnât their job. The economy has all kinds of things going on at any given time, they say -- too much randomness and noise to allow a reliable forecast. The best they can do, macroeconomists will say, is to predict the effects of specific policies.
This defense is weak. If the economy is dominated by random noise, that noise will also permeate the data that is used to validate macroeconomic models. If forecasting is impossible, then picking the right policy-evaluation model will also be impossible. Also, the inability to forecast is often a clue that a model is just plain wrong.
So forecasting actually is important, and macroeconomic models are bad at it. Thereâs even a whole line of research dedicated to showing just how bad even the most advanced models are at predicting things like output and inflation.
ï¼æ訳ï¼
ãã¯ãçµæ¸å¦è ã¯ãäºæ¸¬ã¯èªåãã¡ã®ä»äºã§ã¯ãªããã¨åå¿ããã®ã常ã§ãããçµæ¸ã§ã¯ãã¤ã§ããããããã¨ãèµ·ãã¦ãããä¿¡é ¼ã§ããäºæ¸¬ãããã«ã¯ã©ã³ãã è¦å ã¨ãã¤ãºãå¤ããããã¨å½¼ãã¯è¨ããå½¼ãã«ã§ããæåã®ãã¨ã¯ãç¹å®ã®æ¿çã®å¹æãäºæ¸¬ãããã¨ã§ãããã¨ãã¯ãçµæ¸å¦è ã¯è¨ãã
ãã®æå¼ã¯èª¬å¾åã«æ¬ ãããããçµæ¸ãã©ã³ãã ãªãã¤ãºã«ãã£ã¦æ¯é ããã¦ãããªãã°ããã®ãã¤ãºã¯ãã¯ãçµæ¸ã¢ãã«ã®æå¹æ§ã確èªããã®ã«ä½¿ããããã¼ã¿ã«ãè延ãã¦ããã¯ãã§ãããããäºæ¸¬ãä¸å¯è½ã ã¨ãããªãã°ãæ£ããæ¿çè©ä¾¡ã¢ãã«ãé¸æãããã¨ãã¾ãä¸å¯è½ã¨ãããã¨ã«ãªããå ãã¦ãäºæ¸¬ãã§ããªããã¨ã¯ãã¢ãã«ãåã«ééã£ã¦ãããã¨ã示ãã¦ããå ´åãå¤ãã
å¾ã£ã¦äºæ¸¬ã¯å®éã®ã¨ããéè¦ã§ããããã¯ãçµæ¸ã¢ãã«ã¯ãããä¸æãã§ããªããæãå é²çãªã¢ãã«ã§ããçç£ãã¤ã³ãã¬ã¨ãã£ãé ç®ã®äºæ¸¬ãã¨ã«ããå¦ä½ã«ã§ããªãããã¨ãããã¨ã示ãã®ã«ç¹åããä¸é£ã®ç 究ããåå¨ããã
ããããç 究ä¾ã¨ãã¦ãã¢ãããªã³æ°ã¯2ç·¨ã®è«æãæãã¦ããããã®ãã¡ã®ä¸ç·¨ã§ã¯ãDSGEã¨åç´ãªARã®äºæ¸¬ã®æ績ãæ¯è¼ããã¨ãããã©ã£ããã©ã£ããã§ãã£ãã¨ãã*1ãã¾ããããä¸ç·¨ã§ã¯ãäºæ¸¬ææ³ãçºéãããæ§ã ãªã¢ãã«ããè¤æ°ã®å é²å½ã®çç£ã¨ã¤ã³ãã¬ã¨ãã2é ç®ã®äºæ¸¬ã«ã¤ãã¦æ¯è¼ããã¨ãããäºæ¸¬æéã®é·ãã¨å¤æ°ã«ãã£ã¦äºæ¸¬ç²¾åº¦ã®é«ãã¢ãã«ãå ¥ãæ¿ãããå£æ ã®èæ¯ã¹ã¨ããçµæã«çµãã£ãã¨ãã*2ãããã¯äºæ¸¬ç²¾åº¦ã¯ä¸»ã«éã«ãããã¨ã示ãã¦ãããå¹¾ã¤ãã®äºæ¸¬æéã§DSGEãåå©ãåããã®ããã¾ãã¾ã§ããããã¨ãã¢ãããªã³æ°ã¯è¨ãããããããã§ãåç´ãªARã¢ãã«ãè¤éãªã¢ãã«ã¨äºè§ã«æ¸¡ãåã£ã¦ãããäºæ¸¬æéãé·ããªãã¨ãããARæå©ã«ãªã£ã¦ãã£ãã¨ãããããã«â¦ã
Whatâs more, adding more than a few predictors doesnât really improve forecasts. Thatâs discouraging, because it means that macroeconomic data just doesnât have much useful information in it. The old Wall Street joke that âall financially useful data costs money, which is why macro data is freeâ seems to hold true.
All this adds up to a pessimistic conclusion -- recessions just arenât very predictable from economic data. The reason economists couldnât foresee the Great Recession isnât that theyâre blinkered or closed-minded or arrogant or stupid -- itâs because no one could predict it, at least not with the kind of macroeconomic data that now exist.
That in turn implies that much of macroeconomics itself, as currently practiced, is a dead-end pursuit.
ï¼æ訳ï¼
ãã®ä¸ãäºæ¸¬ç¨ã®å¤æ°ãæ°å¤ã*3å ãã¦ãäºæ¸¬çµæã¯ãã¾ãæ¹åããªãã£ããããã¯ããã¯ãçµæ¸ãã¼ã¿ã¯ãã¾ãæç¨ãªæ å ±ãå«ãã§ããªããã¨ãããã¨ãæå³ãã¦ããã失æãããããçµæã§ããããééçã«æç¨ãªãã¼ã¿ã¯ãã¹ã¦è²»ç¨ãæãããããããã¯ããã¼ã¿ãç¡æã§ããçç±ã ãã¨ããã¦ã©ã¼ã«è¡ã®æããã®ã¸ã§ã¼ã¯ã¯çå®ã§ããããã«æãããã
以ä¸ã®ãã¨ãèãåãããã¨ãããããæ¯æ°å¾éã¯çµæ¸ãã¼ã¿ããæ£ç¢ºã«äºæ¸¬ã§ãããã®ã§ã¯ãªããã¨ããæ²è¦³çãªçµè«ãåºã¦ãããçµæ¸å¦è ã大ä¸æ³ãäºè¦ã§ããªãã£ãã®ã¯ãå½¼ãã®è¦éãäºè¦ãçãã£ãããã§ãå½¼ããå²æ ¢ãããã¯æãã ã£ãããã§ããªããå°ãªãã¨ãç¾å¨åå¨ããé¡ã®ãã¯ãçµæ¸ãã¼ã¿ã§ã¯èª°ãäºæ¸¬ã§ããªããããã¨ããããã ã
ãããªãã¨ãç¾å¨è¿½ç©¶ããã¦ãããã¯ãçµæ¸å¦ã®å¤ãã¯å ã®ãªãç 究ã§ãããã¨ãããã¨ã«ãªãã
ãã ãã¢ãããªã³æ°ã¯ãèªåã¯ã¾ã ããã¾ã§ã¯æ²è¦³çã«ãªã£ã¦ããªããã¨ä»ãå ãã¦ãããããã¦ããã¯ãçµæ¸ææ¨ã§ã¯ãªãéèå¸å ´ã®ææ¨ã使ããã¨ã«ãã£ã¦äºæ ãæ¹åãããã¨ããæ¹åæ§ã«æã¿ãè¦ãåºãã¦ããã
*1:Refet GurkaynakãBurcin KisacikogluãBarbara RossiãDo DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?ãï¼2013ï¼ã
*2:Andrea CarrieroãAna GalvaoãGeorge KapetaniosãA comprehensive evaluation of macroeconomic forecasting methodsãï¼2016ï¼ããã®è«æã§æ¯è¼å¯¾è±¡ã¨ããã®ã¯ãFactor-Augmented Distributed Lagï¼FADLï¼ã¢ãã«ãMixed Data Samplingï¼MIDASï¼ã¢ãã«ãBayesian Vector Autoregressiveï¼BVARï¼ã¢ãã«ãããã³ä¸åã®DSGEã¢ãã«ã§ããã³ããã¼ã¯ã¨ãã¦åç´ãªARã¢ãã«ã使ç¨ã
*3:è«æã«ããã¨100åç¨åº¦ã