ãã°ã¤ã³èªã¿è¾¼ãã§ãã¾ãâ¦
ç£æ¥ãå¦è¡ã®å¹ åºãåéã«ãããç¾å®åé¡ã®è§£æ±ºã«æ°çæé©åãæ´»ç¨ããããã®å®è·µçãªæ çµã¿ãç´¹ä»ãã¾ãï¼æ¬è¬æ¼ã§ã¯ã¡ã¿ãã¥ã¼ãªã¹ãã£ã¯ã¹ãä¸å¿ã¨ããã¢ããã¼ããç´¹ä»ãã¦ãã¾ããï¼å®éã«ã¯ããã«éããä»ã®æé©åææ³ã«ããã¢ããã¼ããæ¤è¨ã»é©ç¨ããäºä¾ãå°ãªãããã¾ããï¼
ãã¼ãã»ã¸ã§ã¤ã³ãã¹ã¨ã³ã©ãã¬ã¼ã¿ã¼éã¯ãç¾ç¶ã®ãã¤ãºç¢ºçè«ã§ä½¿ããã¦ããæ¦å¿µã»ç¨èªã»è¨æ³ã¨ã¯ç°ãªããå®å ¨ã«æ°ããæ¦å¿µã»ç¨èªã»è¨æ³ãææ¡ãã¦ãã¾ããæªãã風ç¿ããããã¿ãæã¡åã£ã¦ãçè«ããªãã©ã¼ãã¥ã¬ã¼ãããã®ã§ãã å¾æ¥ã®ããæ¹ã«æ £ãã¦ããæ¹ã¯ãå½¼ãã®ã¹ã¿ã¤ã«ã«å¼·ãéåæãæã¤ããããã¾ãããããããç½ç´ã§èããã°ãã¨ã¦ã使ãããããã®ã§ããåã¯ãã¸ã§ã¤ã³ãã¹ã»ã¹ã¿ã¤ã«ãè¥å¹²ã¢ã¬ã³ã¸ãã¦ä½¿ã£ã¦ããã®ã§ãããã»ãã¨ã«æ°æã¡ããã¦ãå¾æ¥æ¹å¼ã«æ»ãæ°ã«ã¯ãªãã¾ããã ä»æ¥ã¯ããã®å 容ã®è©³ç´°ã¾ã§ã¯è§£èª¬ãã¾ããããåºæ¬æ¦å¿µã ãã«çµã£ã¦é°å²æ°ãç´¹ä»ãã¾ãï¼ããã§ããã£ãããªé·ãã«ãªãã¾ããï¼ã å å®¹ï¼ ãã¤ãºç¢ºçè«ãæ´çãã¦åæ§æãã ç¶æ å¤æåã¨è¿°èªå¤æå 確ççç¶æ 確ççç¶æ å¤æåã¨ãã£ã³ãã« ãã£ã³ãã«ã«ã¤ãã¦ããå°ã ç¶æ ã¨ãã£ã³ãã«ã®å®ä¾ ãã¡ã¸ã¼è¿°èª ãã¤ãºè«çï¼ãã¤ãºè¨ç®ã«åãã¦
ãªã³ã©ã¤ã³ã§å ¥æã§ããæ°çè«çå¦ã»æ°å¦åºç¤è«ã®ããã¹ã æ°çè«çå¦ãæ°å¦åºç¤è«ã®æç§æ¸çã«ä½¿ããããã¹ãï¼è¬ç¾©ãã¼ãããµã¼ã´ã§ã¤ãã¢ãã°ã©ãçï¼ã®ãã¡ããªã³ã©ã¤ã³ã§å ¥æã§ãããã®ãéãã¾ããã å ¥éçæ¦èª¬ è«çä¸è¬ é«éè«çã¨åçè« ç´è¦³ä¸»ç¾©è«ç ã³ã³ããã¼ã¿ã¨ã©ã ãè¨ç® æç¸è«çããã³æå¶è«ç æ§ç¸è«ç é©åãã®è«ç èªç¶è¨èªã®è«ç 空éè«ç ã¢ãã«çè« å®å®æ§çè« ç¡éè«ç è¨ç®å¯è½æ§çè«ããã³å帰çè« éåè« pcfçè« è¨è¿°éåè« å®æ°ã®éåè« é¸æå ¬ç å¼·å¶æ³ã¨å é¨ã¢ãã« é£ç¶ä½ä»®èª¬ NF 証æè«ã¨æ§æçæ°å¦ é åºæ°è§£æ ç®è¡ã®ä½ç³»ã¨ä¸å®å ¨æ§ 証æå¯è½æ§è«ç ç·å½¢è«ç æ§æçæ°å¦ 代æ°çè«çã¨åè« ãã¼ã«ä»£æ° æ®éä»£æ° éåè«ç åè« æ´å² å ¥éçæ¦èª¬ [â²] å èé夫ï¼ãæ°çè«çå¦ï¼å½é¡è«çã¨è¿°èªè«çï¼ãï¼[PDF] åç°åï¼ãæ°çè«çå¦ è¬ç¾©ãã¼ãï¼2013年度çï¼ãï¼ St
çºè¡æ¥ï¼2013å¹´1æ25æ¥ çºè¡ï¼ãµã¤ã¨ã³ã¹ç¤¾ ISBNï¼978-4-7819-9901-2 ãµã¤ãºï¼é»åæ¸ç± ãã¼ã¸æ°ï¼214ãã¼ã¸ å¨åº«ï¼å¨åº«ãã å 容詳細 ãããã¸ã¼ãåè«ãå¾®åå¹¾ä½å¦ã¯ï¼ç´ 人ã«ã¯è¿å¯ãããããé«ç´ãªæ°å¦ãã§ã¯æ±ºãã¦ãªãï¼ãã®ä¸çã«çèµ·ããåºæ¥äºãèªãããã®ãããã¦èªç¶ãªè¨èªã§ããï¼èªåã®è¨èã¨ãã¦æ´»ç¨ã§ããããã«ãã¦ããã¨ï¼ãããããªãã¨ãæ解ã«ï¼ãã¤çãçãã¨è¦ãã¦ãããããªãã®ã§ããï¼æ¬æ¸ã¯ï¼ãã®ãã¨ããããæãä¼ããï¼ç工系ä¸è¬ã®å¦é¨ä¸ç´çï¼å¤§å¦é¢çåãã®å¹³æãªå ¥éæ¸ã§ããï¼ ã注æã«éãã¦ã®æ³¨æäºé Ãããªã³ãã¢ã¦ã Ã注æãã£ã³ã»ã« ï½ãã®ååã¯é»åæ¸ç±ã§ãï¼é»åæ¸ç±ã«ã¤ãã¦ã®ãå©ç¨æ¡å ãå¿ ãã確èªãã ãã.ï½ ç¬¬1ç« ãå¤å»¶ã¨å å ã®åå¯¾æ§ 1.1ãéåã¨åå 1.2ãéåã®å¤§å° 1.3ãååéå 1.4ãæ´¾çããéå 1.5ãå¤å»¶ã¨å å 1.6ãå対æ§
æ å ±å¹¾ä½ã®åºç¤æ¦å¿µ é·å²¡ 浩å¸ï¼é»éå¤§ï¼ ãã¼ãï¼éç°ç¥å®£ï¼OCAMIï¼ Â§ 0. å ãæ å ±å¹¾ä½ã¨ä»åã®è¬ç¾©ã®æ¦ç¥ãè¿°ã¹ããæ å ±å¹¾ä½ã¨ããè¨èã¯å³å¯ãªå®ç¾©ã ãã訳ã§ã¯ãªãã人ã«ãã£ã¦çãæãããããåºãæãããããããããã¯æãã å ´æãç°ãªããããããªãã確çåå¸ããããã¯ç¢ºçæ§é ã®ä¸ã¤ä¸ã¤ãç¹ã¨ããã ããªç©ºéãèãããã®ä¸ã«å¾®åå¹¾ä½çæ§é ãã®ãã¦è§£æãããã¨ã¯å ±éãã¦ããã ãã®ãããªè¦³ç¹ã«ç«ã£ã¦ãå ¥ãæ§é ã«ã¯è²ã ããããã®ä¸ã§ä»åã¯ä¸çªåºæ¬çä¸ã¤ éè¦ã¨æããã Fisher è¨éï¼ã¨äºããã Riemann è¨éï¼ã¨ α-æ¥ç¶ï¼ã¨äºããã aï¬ne æ¥ç¶ï¼ ããããã¯ç¢ºçåå¸ãè¦ç´ ã¨ããå¤æ§ä½ä¸ã«ã®ããã®è©±ããããããã® ãããªè©±ãæ´å²çã«ã©ã®ããã«åºã¦æ¥ããã¨äºãã°ãããããã¯çµ±è¨å¦ããã§ããã çµ±è¨å¦ã®ä¸ã§ Fisher æ å ±è¡åï¼Fisher æ å ±éï¼ãããããï¼ï¼ä¸ç´å
æ°å¦ã®æ£æ©é ã©ãªãã«ã§ã楽ãããæ åä½åã§ãï¼ ï¼ç« ãããªãï¼æéã®æ°å¦ã®ãããªã第ï¼ã®æ¬¡å ã¸ãããªãï¼ç®ãããããããªæ°å¦ãå ªè½ã§ãã¾ãï¼ è©³ããã¯ï¼åç« ã®èª¬æãã覧ãã ããï¼ã解説ã ã¸ï¼ å·¦ã®ç»åãã¯ãªãã¯ãã¦äºåç·¨ãã覧ãã ãã(ã¹ãã¼ã«ã¼ããªã³ã«ãã¦ãã ãã)ï¼ ç¡åãã¦ã³ãã¼ãã§ãã¾ãï¼ãª ã³ã©ã¤ã³ã§ãè¦ããã¾ãï¼ ãã®æ åã¯Creative Commonsã©ã¤ã»ã³ã¹ã«å¾ã£ã¦æä¾ããã¦ãã¾ãï¼ è©³ããã¯ãã¦ã³ãã¼ãã®ãã¼ã¸ãã覧ãã ããï¼ ãã¬ã¼ã·ã§ã³ã¨åå¹ã以åãããå¤ãã®è¨èªã§æä¾ãã¦ãã¾ãï¼ ãã¬ã¼ã·ã§ã³ã¯ï¼ãã¤ãèªï¼è±èªï¼ã¢ã©ãã¢èªï¼ã¹ãã¤ã³èªï¼ãã©ã³ã¹èªï¼ã¤ã¿ãªã¢ èªï¼æ¥æ¬èªï¼ãã·ã¢èªããé¸ã¹ã¾ãï¼ åå¹ã¯ï¼ãã¤ãèªï¼è±èªï¼ã¢ã©ãã¢èªï¼ãã¹ãã¢èªï¼ä¸å½èªï¼ã¹ãã¤ã³èªï¼ãã©ã³ã¹èªï¼ã®ãªã·ã£èªï¼ããã©ã¤èªï¼ã¤ã¿ãªã¢èªï¼æ¥æ¬èªï¼ãªã©ã³ãèªï¼ãã«ã㬠ã«èªï¼ãã·ã¢èªï¼ã»ã«ã
ãããã°ã©ãã®ããã®åè«ãã¯ããã¾ã§ã®åãã¾ã¨ãã¦PDFãã¡ã¤ã«ã«ãã¾ãããåèã«ãã¦ãã ããã
ãã¥ã¼ã Feed ãã®ãã¼ã¸ã«ã¤ã㦠ããã¯ãçè (@mod_poppo) ã代æ°çå®æ°ãããã°ã©ãã³ã°è¨èªä¸ã§å®è£ ããéç¨ããä¸é£ã®è¨äºã¨ãã¦é£è¼ãããã®ã§ããã#16 ã¾ã§ã¯ãé±åãã¨ãããã¨ã§å®æçãªé£è¼ãç®æãã¦ãããããã以éã¯ä¸å®æé£è¼ã¨ãªãã æ¸ç±å 2018å¹´10æ8æ¥ã®ãæè¡æ¸å ¸5ãã«ãã®é£è¼ãæ¸ç±åãããã®ãåºãã¾ããï¼å çè¨æ£ããï¼ã詳ãã㯠æè¡æ¸å ¸5ã«ä»£æ°çæ°ãä½ãæ¬ãåºãã¾ã ãåç §ãã¦ãã ããã BOOTHã§PDFçãè³¼å ¥ã»ãã¦ã³ãã¼ãã§ãã¾ãï¼1000åï¼ã詳ããã¯ä»¥ä¸ã®ãªã³ã¯å ãåç §ï¼ ã代æ°çæ°ãä½ã å¤é å¼ã®æ ¹ã¨å æ°å解ã®ã¢ã«ã´ãªãºã ã ç®æ¬¡ #0 ã¤ã³ãããã¯ã·ã§ã³ (2017å¹´10æ14æ¥) è¨ç®å¯è½å®æ° #1 ä¸å¤æ°å¤é å¼ç° (2017å¹´10æ14æ¥) ä¸å¤æ°å¤é å¼ç°, ãã¼ãã¼æ³, ã¦ã¼ã¯ãªããã®äºé¤æ³, ä¿æ°è¨å¼µ #2 å®æ ¹ã®æ°ãä¸ã (
å ¨é¨è©±é¡ãã©ãã©ã§ãã 1.ãªãç©çéã¯ç°ãªã®ãï¼ ä»ã¼ãã§Ishamæéåè«æ¬ãèªãã§ãããããã®ã§ãããããã«éãããããæèã«ããã¦ã次ã®ãããªå¯¾æ¯ãèªãããäºãããã¾ãã ããªãã¡ã å¤å ¸åå¦ã§ã¯ç©çéã®ãªãç°æ§é ãå¯æã§ãã£ãããéåè«ã§ã¯ä¸è¬ã«éå¯æã«ãªãã ãã®å¯æéå¯æã¨ãã対æ¯ã¯ãåã«ãã種ã®ä»£æ°æ§é ã®æ¡ä»¶éæ¾ã¨ããæå³ã§ãå°ãªãã¨ãæ°å¦çã«ã¯ãèªç¶ãªä¸è¬åã®çºæ³ã§ ããã§ä¾ãã°å¯æ/éå¯æC*ç°ããGNå対ãéãã¦æ®éã®å¹¾ä½(ã³ã³ãã¯ããã¦ã¹ãã«ãä½ç¸ç©ºé)/éå¯æå¹¾ä½ã®å¯¾æ¯ã«ãªãã ã¨ãã ãããã¯éå群ã ã¨ãããå称ãããã«ç±æ¥ããã ã¨ããã£ã話ã«ç¹ãã£ãããç©çã§ã¯éå¯ææ§ã«ãã£ã¦ãç©çéã®åæ測å®ãåæå¤ä»ä¸ãã§ããªããä¸ç¢ºå®æ§é¢ä¿ã«ã¤ãªããã¨ãããããã£ã風潮ãè¨ãåãã®èæ¯ãæä¾ãã¦ããããã«ã«æãã¾ããï¼ããã§ãªããªãããã¯è¯ããã¨ãªã®ã§ã©ãã§ãããã§ãï¼
å®ã¯ãã¾ããæ°å¦è ãã¡ã¨é¼è«ããããã¨ã«ãªãããã®ãé¡ã®ããã«ããªã¼ãã³é¢ã»å±¤ã»ã³ãã¢ãã¸ã¼ç¾¤ã»ã¹ãã¼ã ã®åå¼·ãåéããã ãªã¼ãã³é¢ã¨ããã®ã¯ãããå°ããé¨åã ããå±æçã«è¦ãã¨ãè¤ç´ å¹³é¢ãã¨åä¸è¦ã§ãããããªç©ºéã®ãã¨ãéã«è¨ãã¨ãè¤ç´ å¹³é¢ã®åç¹ä»è¿ã®åãããããè²¼ãåããã¦ä½ãåºãã空éã®ãã¨ã ãä¾ãã°ããªã¼ãã³çé¢ã¯ãäºæã®åããæ¤ã®ããã«ä¸¸ãã¦å対åãã«ã¯ãè¾¼ãã§çå½¢ã«ãããªã¼ãã³é¢ã®ä¸ç¨®ã§ããããã¼ããå(ãã¼ã©ã¹)ãåã湿å¸è¬ã®ããã«ãºããºãã¨è²¼ã£ã¦ããã°ä½ãããããªã¼ãã³é¢ã ã ãªã¼ãã³é¢ã»ã³ãã¢ãã¸ã¼ç¾¤ã¯ãå°æ¨æ½å示ã代æ°æ²ç·è«ãæåæ¸åºã§åå¼·ãã¦ããããã®æ¬ã¯ä»¥åã«ããç¶ã»ç¶ã»å å·å çã¨ãã³ã°ã¯ãªã ã¾ã³ã®é - hiroyukikojimaã®æ¥è¨ã®ã¨ã³ããªã¼ã§ç´¹ä»ããããããä¸åº¦æåããèªã¿ç´ãããã¡ãªã¿ã«ãã®æ¬ã¯ãã代æ°æ²ç·ãã¨é¡ãããããããªã¼ãã³é¢ãã¨é¡ããã¹ãæ¬
ã¤ã³ã¿ã¼ãããã§è³ææ¢ãããã¦ããã¨ãåºçããã¦ããæ¸ç±ã¨åãå 容ã®PDFãã´ãã³ã¨ç½®ãã¦ãã£ã¦ããã¯ãªãããã¨ãããã¾ãã以ä¸ã«æããã®ã¯ããã®ãããªãâåºçç©ã¨åçãªå 容âãç¡æå ¬éããã¦ããçæ°ç³»å°éæ¸ã®ãªã¹ãã§ãã ç´ã®æ¬ã¨ã¾ã£ããåããã®ãããã¾ããããã©ããå稿ãå ¬éããã¦ãããã®ãããã¾ããç´ã®æ¬ã®åºçå¾ãã¡ã³ããã³ã¹ããã¦ãã¦ãã¤ã³ã¿ã¼ãããçã®ã»ããããæ°ããããå å®ãã¦ãããã¨ãããã¾ãã ä¾ãã°"Monoidal Functors, Species and Hopf Algebras"ã¯ããã¼ãã«ãã¼æ¬ã¯735ãã¼ã¸ã§ãç¾æç¹ã§24,650åããã大é¨ãªæ¸ç±ã§ããå ¬éããã¦ããPDFã¯æ¸ç±ããå¢éãã¦836ãã¼ã¸ããã誰ã§ãç¡æãã¦ã³ãã¼ãå¯è½ã§ãã èä½æ¨©ããããããã®ã¯é¤å¤ããèè æ¬äººã¾ãã¯èè ã®æå±çµç¹ã®Webãµã¤ãããããã¯arXiv.orgã§å ¬éããã¦ããã
2013å¹´ã®åé ã«ããã¤ã´ã£ããã»ã¹ãã´ã¡ãã¯ã®é¢æãã¼ã¿ã¢ãã«ï¼functorial data modelï¼ã«ã¤ãã¦ç´¹ä»ãã¾ããã ãã¤ã´ã£ããã»ã¹ãã´ã¡ãã¯ã¯ãã¼ã¿ãã¼ã¹çã®é©å½å ã -- é¢æçãã¼ã¿ã¢ãã« è¡æçãªãã¼ã¿ãã¼ã¹çè«ã»é¢æçãã¼ã¿ã¢ãã« å ¥é ãããã3å¹´3ã¶æãçµéãã¦ãä»ãé¢æãã¼ã¿ã¢ãã«ãåè«ãã¼ã¿ãã¼ã¹ï¼categorical databaseï¼ã®ç¶æ³ã¯ã©ããªã£ã¦ããã§ããããã ä¸è¨ã§ããã°ã æ´¾æã«å§ä¼ã¯ããã¦ãªãããçå®ã«çºå±ãã¦ãã ã¨ãªãã§ãããããã®é²å±ã®æ§åã次ã®3ã¤ã®å´é¢ããæ¦è¦³ãã¦ã¿ã¾ãã ãã¸ãã¹ ã½ããã¦ã§ã¢ çè« å å®¹ï¼ ãã¸ãã¹ï¼ Categorical Informatics, Inc ã½ããã¦ã§ã¢ï¼ FQL IDE çè«ï¼ çå¼è«çã¨ä»£æ°ãã¼ã¿ãã¼ã¹ â» ãªã³ã¯ã¨æ³¨éãããããããã®ã¯ããã®è¨äºãããã®è©±é¡ã«é¢ãã説æä»ãããã¯ã
ãã¸ãã¯ããããæ¬ã®ç´¹ä» ãç¥ãã ç¾å¨, ããããæ¬ã®ç´¹ä»ãåéãã¦ãã¾ã. ãååãã ããæ¹ã¯, é£çµ¡å ã¸ãé¡ãè´ãã¾ã. æ¦è¦ ã¯ããã« ãã®ãã¼ã¸ã¯, ããããç¬å¦ã®äººãå¤ãã§ããã, ãã¸ãã¯(æ°å¦åºç¤è«, æ°çè«çå¦. å½ãã¼ã¸ã§ã¯ãã¸ãã¯ã«çµ±ä¸ãã¾ã)åå¿è ã®æ¹ã®ããã«, ç 究è ã¾ãã¯å¤§å¦é¢çã«ããããããæ¬ã®ç´¹ä»ãéãã¦ãã¾ã. ãã¸ãã¯ãå¦ã³ããã, ã©ããªæ¬ãèªãã ãè¯ããããããªã. èå³ã¯å®ã¾ã£ãã, ã©ããªæ¬ãããã®ãããç¥ããªã. 1åèªã¿çµãã£ãã, ã©ããªæ¬ãèªãã°æ¬¡ã®ã¹ãããã¨ãã¦è¯ãã®ãããããªã. ã¨ãã人ã主ãªå¯¾è±¡ã¨ãã¦ãã¾ãã, ãã以å¤ã®äººã«ããã£ã¨å½¹ã«ç«ã¤ã¨æãã¾ã. åé¡ ãã¸ãã¯ã«ã¯, 証æè«, ã¢ãã«çè«, è¨ç®çè«, éåè«ã®4大åéãããã¾ã. å½ãã¼ã¸ã¯ããã«å¾ã, åéæ¯ã®ç´¹ä»ã¨ãã¦ã¾ã¨ãã¦ãã¾ã. ã¾ã, ã©ãã«ãå½ã¦ã¯ã¾ããªã
Category Theory for Programmers: The Preface Posted by Bartosz Milewski under C++, Category Theory, Functional Programming, Haskell, Programming [184] Comments Table of Contents Part One Category: The Essence of Composition Types and Functions Categories Great and Small Kleisli Categories Products and Coproducts Simple Algebraic Data Types Functors Functoriality Function Types Natural Transformati
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}