Explore and run machine learning code with Kaggle Notebooks | Using data from multiple data sources
Logistics Lectures: are on Tuesday/Thursday 4:30 PM - 5:50 PM Pacific Time in NVIDIA Auditorium. The lectures will also be livestreamed on Canvas via Panopto. Lecture videos for enrolled students: are posted on Canvas (requires login) shortly after each lecture ends. Unfortunately, it is not possible to make these videos viewable by non-enrolled students. Publicly available lecture videos and vers
ãä»äºç´¹ä» ãã®å¤ã«ãã£ã¦ãä»äºãããã®å¾ã®çæ§ã®åªåããã£ã¦ç¡äºãªãªã¼ã¹ãããããã§ãæå ã®ã¢ããªã«ãéã£ã¦ããããã¡ããã¡ãã表ã§ã話ãåºã¦ããã®ã§ãã®ç´¹ä»ãã https://speakerdeck.com/diracdiego/20171029-kantocv-kikuta ããã§ç´¹ä»ããã¦ããã«ãã´ãªåé¡ãã¨ããã®ãèªåããã£ã¦ãç©ã§ãã åçããæçã®ååãã¨ã«ãã©ã«ãåããããã®ãããªãã¥ã¼ãä½ããã¨ããæ©è½ã§ããã®ãã¡ã¢ãã«ã®æã ããæ å½ãã¦ãã¾ããã UIããµã¼ãã¹ã¨ãã¦ã¯ããããé£ãããããã«ãããã¢ãã«ã¨ãã¦ã¯ç»åããã©ã®æçãå½ã¦ãããªãã¦ãããããã«ãæ®éã®ç»åèªèåé¡ã¨ãªã£ã¦ããã ãã«ãã©ãã«ã«ãããã·ã³ã°ã«ã©ãã«ã«ããããã¨ããç´°ããæã§é¸æè¢ã¯ããããããã«ããããã¼ã¿ã»ãããã©ãã«ä»ãããã¦ãã®ãæ¢ã«ããããããé£ããäºã¯ç¡ãã ãããã¨æã£ã¦ããï¼ããã¯
Word embeddings in 2017: Trends and future directions Word embeddings are an integral part of current NLP models, but approaches that supersede the original word2vec have not been proposed. This post focuses on the deficiencies of word embeddings and how recent approaches have tried to resolve them. This post discusses the deficiencies of word embeddings and how recent approaches have tried to res
ããã«ã¡ã¯ãã¼ã¸ã¿ãã§ãã æ©æ¢°å¦ç¿ããã£ãããã¼ã ã«ãªã£ã¦ãä»äºã趣å³ã§ãã£ã¼ãã©ã¼ãã³ã°ã使ã£ããã¨ããã人ãå¢ãã¦ããã¨æãã¾ãã ç¹ã«ç»ååéã§ãã£ã¼ãã©ã¼ãã³ã°ã¯ææãä¸ãã¦ããã®ã§ãç¹å®ã®ãã®ãå¤å¥ã»èå¥ããã¨ãã£ãäºä¾ãå¤ããã¨æãã¾ãã ããããç»åç³»ã®ãã£ã¼ãã©ã¼ãã³ã°çµé¨è ãªãçµé¨ããç¾è±¡ãããã¾ãã ããã¯ã ããã®åéã«ã¤ãã¦ãä½ã£ãAIãããèªåã詳ãããªãã ã¨ããç¾è±¡ã§ãã ããæ¾ããè¦åãã®ç¬¬ä¸äººè ã«ãªã£ã¦ãã¾ã£ã 以ååãçµãã ããæ¾ããã®6ã¤åããã£ã¼ãã©ã¼ãã³ã°ã§è¦åãããã¿ã§ã¯ãå¦ç¿ç¨ãã¼ã¿ã»ããã®ä½æã®ããã«ãèªåã§5000æ以ä¸ã®ããæ¾ãããã¡ãè¦åããä½æ¥ãè¡ãã¾ããããã®çµæãã¢ãã¡ãè¦ã¦ããããã¯ä½æ¾ã ãã¨å¤æã§ããããã«ãªã£ã¦ãã¾ãã¾ãããå½æã¯ããæ¾ãããè¦åããè½åã¯èª°ã«ãè² ããªãèªä¿¡ãããã¾ããã ãªããå¦ä¼ã§ããæ¾ããã®è©±ãããæ©
ãã®ã¨ã³ããªã«ã¤ã㦠2種é¡ã®è¦ä»¶ æ§è½è¦ä»¶ã®ãã¹ã offline 㨠online offline æ§è½ãã¹ãã®èªåå A/B ãã¹ãã¯ããã«ã»ãã æ©è½è¦ä»¶ã®ãã¹ã æ§è½ãã¹ãã®ã¿ã§ååãªã®ã§ã¯ï¼ ãã¹ããã¼ã¿çæ æ©è½ãã¹ãããã¤ä½ãã ã¾ã¨ã ãã®ã¨ã³ããªã«ã¤ã㦠ãã¨ã ã§ãã 11/8(ç«) ã«éå¬ããã Cloudera World Tokyo 2016 ã«åå ãã¾ããã 大è¦æ¨¡ãã¼ã¿ã«å¯¾ãããã¼ã¿ãµã¤ã¨ã³ã¹ã®é²ãæ¹ #CWT2016 (以ä¸ãçºè¡¨ 1) ãã¼ã¿åæã°ã«ã¼ãã®çµç¹ç·¨å¶ã¨ãã®èª²é¡ ãã¼ã±ãã£ã³ã°ã«ãããKPIè¨è¨ã®å¤±æä¾ ABãã¹ãã®æ´»ç¨ã¨ãæ©æ¢°å¦ç¿ã®å°å ¥ #CWT2016 (以ä¸ãçºè¡¨ 2) ãã®ä¸ã§ä¸è¨ã®2ã¤ã®çºè¡¨ãã¨ã¦ããã話ã§ããã å¤å°çµ¡ã¿ã®ããå 容ã¨ãã¦æ©æ¢°å¦ç¿ãå©ç¨ãããããã¯ãã®ãã¹ãã«ã¤ãã¦è¿°ã¹ããã¨ã¡ãã£ã¨åããèãã¦ããã®ã§ãããæ©ä¼ãªã®ã§
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}