NTT Tech Conference #2 ã«ã¦è©±ããè³æ æéã足ããªãã£ãã®ã§å ¨é¨ã¯è©±ããªãã£ããRead less
ãæ¯ææ´æ°ã»æ¥æ¬ã® AWS ã¨ã³ã¸ãã¢ãã¯ã©ã¦ã解説ã åå¿è åã解説ãææ°ã®ã¯ã©ã¦ããã¤ãã£ããªéçºææ³ã»å©ç¨ã·ã¼ã³å¥ãã³ãºãªã³ãå¦ã¶ »
Availability is in some sense a much wider concept than uptime, since the availability of a service can also be affected by, say, a network outage or the company owning the service going out of business (which would be a factor which is not really relevant to fault tolerance but would still influence the availability of the system). But without knowing every single specific aspect of the system, t
3. è¬ç¾©å 容 ï® åºè« - 並åãã¼ã¿ãã¼ã¹ã®åã« ï® ä¸¦åå¦çã®åºç¤ ï® ï® ä¸¦åå¦çã®Terminology 並åè¨ç®æ©ã¢ã¼ããã¯ãã£ ï® ä¸¦åãã¼ã¿ãã¼ã¹ã®ã¢ã¼ããã¯ãã£ ï® ãã¼ã¿ãã¼ã¹å¦çã®ä¸¦åå ï® çµåå¦çã®é«éå ï® ï® ï® ï® ä¸¦åããã·ã¥çµå 並åã½ã¼ã ãã¼ãã£ã·ã§ãã³ã°ææ³ å¤éçµåãè¨ç®æ©éã®ãã¼ã¿äº¤æã§çºçããåé¡ ï® MapReduceã«ããé¢ä¿æ¼ç®ã®ä¸¦åå¦ç 3 4. ãã¼ã¿ãã¼ã¹éçºã®æµã ï® Coddã®è«æ: 1970å¹´ ï® ï® ï® ï® System RãIngres: 70年代ä¸ç¤ Oracle, IBM DB2, Ingres: 80年代åºç¤ 並åãã¼ã¿ãã¼ã¹ã®éç: 80年代å¾å ï® ï® A Relational Model of Data for Large Shared Data Banks, Communications of ACM åç¨
- Apache Spark is an open-source cluster computing framework for large-scale data processing. It was originally developed at the University of California, Berkeley in 2009 and is used for distributed tasks like data mining, streaming and machine learning. - Spark utilizes in-memory computing to optimize performance. It keeps data in memory across tasks to allow for faster analytics compared to dis
July Tech Festa 2018 ã§ä½¿ç¨ããã¹ã©ã¤ãã§ããäºç¸ã³ããããä¾ã¨ãã¦ãåæ£ã¢ã«ã´ãªãºã ã®æ¤è¨¼ã«ã¢ãã«æ¤æ»ã使ç¨ããææ³ã«ã¤ãã¦è§£èª¬ãã¦ãã¾ããã¾ãã代表çãªã¢ãã«æ¤æ»ãã¼ã«ã§ãã SPINãTLA+ãP ã«ã¤ãã¦ãåãã·ã¹ãã ãåãã¼ã«ã§è¨è¿°ãã¦ã¿ããã¨ã§ãã®ç¹å®ã®éãã«ã¤ãã¦å¦ã³ã¾â¦
åæ£ã·ã¹ãã ã«ã¤ãã¦ã¯ãããéåã¨åããå¦ã³ããã¨æã£ã¦ãã¾ããããã ãããã¯ä¸åº¦é¦ãçªã£è¾¼ãã ãæå¾ãã´ã¼ã«ã®ãªãè¿·è·¯ã«è¿·ãè¾¼ããããªãã®ãªã®ã§ããã©ãã¾ã§ãç¶ãã¦ããã¦ãµã®ã®ç©´ã®ãããªãã®ã§ããåæ£ã·ã¹ãã ã«é¢ããæç®ã¯æã®æ°ã»ã©åå¨ãã¾ããæ§ã ãªå¤§å¦ããããããã®è«æãçºè¡¨ããã¦ããã°ããã§ãªããè¨å¤§ãªæ°ã®æ¸ç±ãããã®ã§ããç§ã®ãããªå ¨ãã®åå¿è ã«ã¯ãã©ã®è«æãèªãã ãããã®ããã©ã®æ¸ç±ãè²·ã£ããããã®ããè¦å½ãã¤ãã¾ããã ãããªã¨ããä¸é¨ã®ããã¬ã¼ãã åæ£ã·ã¹ãã ã¨ã³ã¸ã㢠ï¼ãããã©ãããæå³ã§ããï¼ã«ãªããªãç¥ã£ã¦ããã¹ãè«æã¨ãããã®ãæ¨å¥¨ãã¦ããã®ãè¦ã¤ãã¾ããããã®ä¸é¨ãç´¹ä»ãã¾ãããã FLP , Zab , Time, Clocks and the Ordering of Events in a Distributed Systems , Viewstamped
æ¨æ¥ã«å¼ãç¶ãã¦åæ£ã·ã¹ãã ã®ãã¶ã¤ã³ãã¿ã¼ã³ã«ã¤ãã¦æ¸ãã¦ããããã ã ããã以åã«æ éã¢ãã«ã«é¢ããåæãå¿ãã¦ã¯ãªããªãã人ã«ãã£ã¦æ§ã ãªæ¹éãããããå人çã«ã¯åæ£ã·ã¹ãã ã®ä¸çã«ããã¦æèããªãã¦ã¯ãªããªãæ éã¢ãã«ã¯4ã¤ã ã¨èãã¦ãããåã¯ååã®ããã°ã«æ¸ãã Replication ã®æ¬ããã¼ã¹ã«æ¸ãã¦ãããå°ãè¨èé£ããå®ç¾©ãä»ã¨ããéãç¹ã¯è¨±ãã¦æ¬²ãããã¾ããéä¿¡ã®è±è½ã»é 延ã¨ã¯ã¬ã¤ã¤ã¼ãç°ãªãè°è«ã§ããã æ éã¢ãã«ã®åé¡ æ éãèµ·ããªãã¢ãã« ããã¯æ éãèµ·ããªãä¸çãä»®å®ããã¢ãã«ã§ãããããèªä½ã¯ãããã¯ã·ã§ã³ã«ãã®ã¾ã¾æå ¥ã§ãããã®ã§ã¯ãªããã ããã®æ éã¢ãã«ãæ³å®ãã¦ã解ããªãåé¡ã¯æ éãçºçããç¶æ³ã§ã¯çµ¶å¯¾è§£ããªãäºãæè¨ã§ããããåæãããã³ã«ãæ£ããããè°è«ããåå°ã¨ãªã£ãããæ§ã ãªå®ç¨çãªã¢ã«ã´ãªãºã ãåæ£ã·ã¹ãã ã®åå°ã¨ãªãã¢ã«ã´ãªãºã ãçã¾ããåå£
ãã®æã®ã俺ã¯ä»ãããããèªãã§ãã°ãæ®ããã¼ï¼ãç宣è¨ã¯éå»ã«ä½åº¦ããã£ã¦å½ç¶å¤±æãã¦ããã®ã§ãããªã«æå¾ ããªãã§é ãããã Principles of Distributed Database Systems ããã¯å¾¡å¾çºã¨åä¹ããã©ã³ã¶ã¯ã·ã§ã³ããããã主å°ãã¦åã便ä¹ããã¦ããã ãã¦ããæ¬ãåæ£ãã¼ã¿ãã¼ã¹ã®æ´å²ãANSIã®é ããã¡ããã¡ãã触ããªãããã©ããã風ã«æé©ãªã¯ã¨ãªãå®è¡ã§ãããã«ãã©ã¼ã«ã¹ãã¦ããæãã®æ¬ãSQLã¨ãã¯ã¨ãªãã©ã³ãã³ã°ã¨ãæé©é ç½®ã¨ãéåã®åå²ã¨ããããã話ãå¤ããCAPå®çã¨ããã©ã³ã¶ã¯ã·ã§ã³ã¨ãã¯ãã¾ãåºã¦ããªããéä¸ã¾ã§ããèªãã§ãªãã®ã§ãããªå°è±¡ã ãã©ãä»å¾ã©ããªãããªâ¦ï¼ï¼ 860p Principles of Distributed Database Systems ä½è : M. Tamer Oezsu,Patrick Valduriezåº
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}