Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 è¦ç´ æ©æ¢°å¦ç¿ã¯ã製åãå¦çãç 究ãæ¹åããããã®å¤§ããªå¯è½æ§ãç§ãã¦ãã¾ãã ããããã³ã³ãã¥ã¼ã¿ã¯é常ãäºæ¸¬ã®èª¬æããã¾ããããããæ©æ¢°å¦ç¿ãæ¡ç¨ããéå£ã¨ãªã£ã¦ãã¾ãã æ¬æ¸ã¯ãæ©æ¢°å¦ç¿ã¢ãã«ãããã®å¤æã解éå¯è½ãªãã®ã«ãããã¨ã«ã¤ãã¦æ¸ããã¦ãã¾ãã 解éå¯è½æ§ã¨ã¯ä½ãã説æããå¾ã決å®æ¨ã決å®è¦åãç·å½¢å帰ãªã©ã®åç´ã§è§£éå¯è½ãªã¢ãã«ã«ã¤ãã¦å¦ã³ã¾ãã ãã®å¾ã®ç« ã§ã¯ãç¹å¾´éã®éè¦åº¦ (feature importance)ãALE(accumulated local effects)ããåã ã®äºæ¸¬ã説æããLIMEãã·ã£ã¼ãã¬ã¤å¤ã®ãããªã¢ãã«ã«éä¾åãªææ³(mo
{{#tags}}- {{label}}
{{/tags}}