çèºåº¦éå
çå é度éå
以åã空æ°æµæãç¡è¦ããèªç±è½ä¸éåãããªãã¡çå é度éåã«ã¤ãã¦æ¸ããã
Â
ä¾ãã°å®å®ç©ºéã§ãã±ãããæ縦ãã¦ããã¨ãããããããã«ãä¸å®éè¸ãã°ããã¼ã¹ã¿ã¼ãä¸å®ã®æ¨åãçºæ®ãããã±ããã¯ããªãã¡ã®å é度ã§çå é度éåããã ããã
Â
çèºåº¦éå
ããããå®éã«ã¯ãããããã«ããããªãä¸å®éè¸ãã®ã§ã¯ãªããå¾ã ã«è¸ã¿è¾¼ãã§ãããã¨ã«ãªãããã®éãæ¨åã¯å¢å ãã¦ããã®ã§å é度ãä¸å®ã«ã¯ãªããããã¯ãä¸å®ã®å¤åçã§å¢å ãã¦ããã
Â
å é度ãä¸å®ã®å²åã§æéå¤åãã¦ããæ§åãå¾®åæ¹ç¨å¼ã§è¡¨ãããã®æ¯ä¾å®æ°ãããªãã¡å é度ã®æéå¤åçãèºåº¦(jerk)ã¨è¨ããã¨æ¸ãã
\begin{equation}
\dot{a}=j
\end{equation}
 Â
両辺ãæéã§ç©åãã¦ããã¨ãé度ãä½ç½®ãæ±ãããã¨ãã§ãã
Â
å é度ãæ±ããã
\begin{eqnarray}
\int \dot{a} dt&=&\int j dt\\
a &=& j t+C_1 \tag{1}
\end{eqnarray}
Â
é度ãæ±ããã
\begin{eqnarray}
\int a dt&=&\int (j t+C_1) dt\\
v &=& \frac{1}{2}j t^2+C_1t+C_2 \tag{2}
\end{eqnarray}
Â
ä½ç½®ãæ±ããã
\begin{eqnarray}
\int v dt&=&\int \frac{1}{2}j t^2+C_1t+C_2 dt\\
x &=& \frac{1}{6}j t^3+\frac{1}{2}C_1t^2+C_2t+C_3Â \tag{3}
\end{eqnarray}
å¾®åæ¹ç¨å¼ã解ãã¦ä½ç½®ãæ±ããããã
Â
å¼ã®åæ
å¼(1), (2), (3)ã«ãããããä»£å ¥ãããã¨ã«ãããä»»æå®æ°ãããããããã®æã®, , ã表ããã¨ãåãããåãããããããã«ããã¨æ¸ãç´ãã
\begin{eqnarray}
x &=& \underline{\frac{1}{6}j t^3}+ \underline{\frac{1}{2}a_0t^2+v_0t+x_0}
\end{eqnarray}
Â
å³è¾ºç¬¬2é ãã第4é ã¯çå é度éåã¨å ¨ãåãã§ãæ°ãã«ãå ããå½¢ã«ãªã£ã¦ãããããã¯çééåã¨çå é度éåã®é¢ä¿ã¨åæ§ã§ããã
Â
ããã¯ç©åã®ãã³ã«ãä¿æ°ãã®ææ°ã§å²ãããåæ¯ã«ã¨ããç©ãåºæ¥ã¦ããããã§ãããããªãã¡ãæå³ããã
Â
\begin{eqnarray}
x &=& \frac{1}{3!}j t^3+ \frac{1}{2!}a_0t^2+\frac{1}{1!}v_0t+\frac{1}{0!}x_0\\
&=&\sum_{k=0}^3 \frac{C_k}{k!}t^k
\end{eqnarray}
é ã®æ¯ä¾å®æ°ãæ°åã§è¡¨ãã¨ãçèºåº¦éåã®ä½ç½®ã®å¼ã¯ãã®ããã«çãæ¸ããããã®æè¨å·ã®ä¾¿å®çã«ãå ã»ã©ã¾ã§ã¨ã¯ã®æ¬¡æ°å¯¾å¿ãå¤ãã£ã¦ãããã¨ã«æ³¨æã