1ã¢ã³ã㢠is ä½
æ¦è¦
é»æµåä½ã¢ã³ãã¢ã®æ§å®ç¾©ã®æ¦å¿µã説æããã
Â
å®é¨çäºå®
2æ¬ã®å¹³è¡ãªé ç·ã«ãåãæ¹åã®é»æµãæµãã¨å¼ãåãåãçãããããã§ãå¼ãåãåãå¢ããããã«ã¯ã
1. é»æµ1ãå¢ãã
2. é»æµ2ãå¢ãã
3. é»ç·ãè¿ã¥ãã
4. é»ç·ãé·ããã
ã®ï¼ã¤ã®æ¹æ³ãããã3ã¯èå³ããªãã®ã§ãé»ç·ã¯åä½é·1ã¡ã¼ãã«ã«åºå®ãã¦èããã
æ£ç¢ºã«ã¯ãç¡éã«é·ãå¹³è¡ç·ã®ãã¡ã1ã¡ã¼ãã«ãããã®é ç·ãåããåã¨èãããããèãããã¨ã§ãé»ç·ã®æ²ãããªã©ãå¹³è¡ã§ãªãé¨åã®è¦ç´ ãç¡éã«å°ããèãããã¨ãã§ããã
Â
\begin{eqnarray}
F=k \frac{I_1 I_2}{r}
\end{eqnarray}
Â
ã®ããã«æ¸ãããã¯ã¼ãã³ã®æ³åã¨éã£ã¦ãåæ¯ã¯æ¸¬å®ä¸rã®1ä¹ã§ãã£ãããªãã ãããã
Â
å³ã®ããã«ãã¯ã¼ãã³ã®æ³åã¨ç°ãªããé»ç·ããrã¡ã¼ãã«é¢ããç¹ã«ä½ããã次åã¯rã«éæ¯ä¾ããã®ãçå±çã«ãæ£ããã¨ãããã
Â
é»ç·1ãåããåã ãèãããããªãã¡ãé»ç·1ã¯é»ç·ï¼ãä½ãåºãéç£çã®ä¸ã«åå¨ãããã¨ã«ããåãåããã¨èããã
Â
Â
å軸ã±ã¼ãã«ã®éé»å®¹é
æ¦è¦
å å°ä½ã®å¤å½¢ã ãå¤å°ä½ã®å å¾ãã®å軸ã±ã¼ãã«ãèãããå å°ä½ã¨å¤å°ä½ã®éã¯èªé»çã®èªé»ä½ã§æºããããå¤å°ä½ã¯æ¥å°ãã¦ããã¨ããããã®ç¡éé·ã®å軸ã±ã¼ãã«ã®ã1 mãããã®éé»å®¹éCã以ä¸ã®ããã«ãããããããã¨ã示ãã
\begin{eqnarray}
C = \frac{2 \pi \varepsilon}{\ln {\frac{b}{a}}}
\end{eqnarray}
å°åº
å å´ã®å°ä½ã«1 mãããQ [C]ã®é»è·ãä¸ããã¨ããã¨ãå¤å´ã®å°ä½ã«ã¯-Q [C]ã®é»è·ãèªå°ãããã
Â
ãããæ±ããã
Â
Â
Â
â \lambda =cV
C [F]
c [F/m]
Â
ã¬ã¦ã¹ã®æ³å
\begin{eqnarray}
{\oint_S \boldsymbol{E} \cdot d\boldsymbol{S}}=\frac{Q_in}{\varepsilon_0}
\end{eqnarray}
ãã
é»åã®å¹³åèªç±è¡ç¨
æ¦è¦
åãåãç©ä½ããå¥ã®ç©ä½ã¨2åè¡çªããéã«å¹³åãã¦é²ããè·é¢ã®ãã¨ãå¹³åèªç±è¡ç¨ã¨å¼ã¶ãååãæ¿åæ¥è§¦ã®çºçåæ°ã人éã®2次å å¹³åèªç±è¡ç¨ããå°ããã
Â
å¤ãã®å ´åãå¹³åèªç±è¡ç¨ã¯3次å 空éã¨ç²åã§èããããé£è¡ããç²åã®å¹³åèªç±è¡ç¨ã¯ãæ°ä½ããã©ãºãã®æ§è³ªã表ãéè¦ãªææ¨ã¨ãªããä»åã¯é£è¡ããé»åãèããããã®ç©ºéã«ã¯å¸ã¬ã¹ååãããå¯åº¦ã§åå¨ãããé»åã®å¹³åèªç±è¡ç¨ãå¼ã§è¡¨ãã
Â
å°åº
é£ã³åãé»åã®å¤§ããã¯é常ã«å°ããã¨ã¿ãªããåå¾ã®ç¹ã¨èãããããã«å¯¾ãã¦çã¨ãªãå¸ã¬ã¹åå(以ä¸ãåã«ãååãã¨æ¸ã)ã¯ã¯ããã«å¤§ãããããåå¾ã®çã¨èãããã¾ããååã¯é»åã¨æ¯è¼ãã¦é常ã«é ããé度ã¯ã§ããã¨èãããããã¯ãã©ãºãä¸ãé»åãã¼ã ä¸ã§é»åãé«éã«é£è¡ããæ°ä½ååã«è¡çªããç¾è±¡ãã¢ãã«åããéã«ããç¨ããããè¿ä¼¼ã§ãããå³ã«è¡çªã®æ¨¡å¼å³ã示ããé»åã赤ãååãéã§ç¤ºããã
ç«å¼
ãã®æãé»åã¨ååã®ä¸å¿éè·é¢ããååã®åå¾ã«çãããªã£ãæã«è¡çªãèµ·ãããã¨ãåãããããã¯çµå±ãé»åã®å¨ãã«åå¾ã®çãæããååã®ä¸å¿åº§æ¨ããã®çæ®»ã«è§¦ãããã¨ã¨ç価ã§ããã
Â
ç価ãªåé¡ã«ç½®ãæãã模å¼å³ã示ããé»åãé£è¡ããã¨ãã«è¡çªãèµ·ããé åããã³ã¯è²ã§ç¤ºããã
å³ãããçã®ä½ç©ãåãã¯é¢ä¿ãªããæé¢ç©ã ãã§è¡çªã®æç¡ã決ã¾ããã¨ãåããããã®æé¢ç©ã¯é»å-ååéã®è¡çªæé¢ç©ã¨å¼ã°ããã
Â
é»åãå¹³åèªç±è¡ç¨é£è¡ããéã«å æããè¡çªé åã®ä½ç©ã¯ã次ã®å³ã®ããã«åºé¢ãé«ãã®åæ±åããã¦ããããã®åæ±ã®ä½ç©ã¯ã§ããã
å¹³åèªç±è¡ç¨ã®å®ç¾©ã«ããããã®åæ±ã®ä¸ã«ã¯å¹³åãã¦åã®åå(ã®ä¸å¿ç¹)ãåå¨ããããã®æã®å¯åº¦ã¯ä»¥ä¸ã®ããã«å®å¼åãããã
\begin{eqnarray}
n&=&\frac{1}{\pi r_\mathrm{g}^2 \lambda_\mathrm{eg}}\\
\lambda_\mathrm{eg}&=&\frac{1}{\pi r_\mathrm{g}^2 n}
\end{eqnarray}
å¼å¤å½¢ãã¦ã表ãå¼ã«ç´ããã
Â
è¡çªæé¢ç©ãã§è¡¨ãã¨ã
é»åã®å¹³åèªç±è¡ç¨ã表ãå¼ãå°ãããã
ã³ããã®ææ¢ã«ã¯èªç²ãä½å²å¿ è¦ã
æ¦è¦
æ°åã³ããã¦ã£ã«ã¹COVID19ã®çºçã«ä¼´ããå½å ã§ãå¤åºç¦æ¢è¦è«ãåºããã¦ããã人ã¨äººã¨ã®æ¿åæ¥è§¦ã8å²æ¸ããã°ã³ããã®è延ãé²ããã¨ãããã人ã®å¤åºã8å²æ¸ããå¿ è¦ãããã®ã ãããï¼æ¥è§¦ã®åæ°ãå¼ã§è¡¨ãã人ã®å¤åºã55%æ¸ããã°ç®çãéæã§ãããã¨ãå°ãã
Â
å°åº
æ¿åæ¥è§¦ã®ã¢ãã«å
æ¿åæ¥è§¦ã®åæ°ãå¼ã§è¡¨ãããããã®ããã«è²ã ãªæ°å¤ãæåã§è¡¨ããåç´ãªã¢ãã«ãæ§ç¯ããã
Â
ã¾ã人éä¸äººã²ã¨ãã®ééããããå¤ããè¿ã¥ããã¨ããæ¿åæ¥è§¦ãã¨å®ç¾©ãããããã¯å³ã®ããã«ãèªåã®å¨ãã«åå¾ã®åãèãã¦ããã®å å´ã«ä»äººãå ¥ããã¨ã¨ã¿ãªããã¨ãã§ããã
Â
ãã人ãè¡ãæ©ãæ§åã¯æ¬¡ã®å³ã®ããã«è¡¨ãããã赤ãç¹ã注ç®ãã人ã表ãããã®äººãè¡ãé度ã§æ©ãåãã¨èããä»ã®äººãç¹ç·ã®åã§è¡¨ãããé åã«å ¥ã£ã¦åºãã¨ãæ¿åæ¥è§¦ãä¸åããã¨ã¿ãªãã®ã§ããããã®æãç¹ç·ã®åã®ç¸¦å¹ ããä¸éçãªæ¨ªå¹ ã«ã¯æå³ããªããæ¨ªå¹ ã®æ大å¤ã ãã§æ¿åæ¥è§¦ã®æç¡ã決ã¾ããã¨ãåããã移åããã¨ãã«æ¿åæ¥è§¦ãèµ·ããé åãç°è²ã§ç¤ºããã
Â
å¹³åèªç±è¡ç¨
ã¾ãããã人éä¸äººãã©ããããä»ã®äººã¨æ¥è§¦ããããèããããããä»äººã¨æ¥è§¦ããã«ãå¹³åãã¦ã©ããããé·ãæ©ãããã(=å¹³åèªç±è¡ç¨)ãè¨ç®ããã
Â
人ãæ©ãéã«ãå æããé¢ç©ã®åè¨ã¯å³ã®ããã«ã§è¡¨ãããã
Â
ä¸ã«è¨ããå¹³åèªç±è¡ç¨ã®å®ç¾©ããããã®å æé¢ç©ã®ä¸ã«ãä»äººãå¹³åãã¦ä¸äººãããã¨ã«ãªãããã®æã®äººå£å¯åº¦ã¯ä»¥ä¸ã®ããã«å®å¼åãããã
\begin{eqnarray}
n&=&\frac{1}{2r \lambda}\\
\lambda&=&\frac{1}{2rn} \tag{1}
\end{eqnarray}
å¼å¤å½¢ããã人å£å¯åº¦ã®é¢æ°ã¨ãã¦è¡¨ãããã
Â
人ãåºæ©ãçºã®é¢ç©ããåºæ©ã人ã®æ°ãã¨ããã°ã人å£å¯åº¦ã¯ã¨è¡¨ããããããå¼ã«ä»£å ¥ããã
\begin{eqnarray}
\lambda&=&\frac{1}{2rn}\\
\lambda&=&\frac{1}{2r\frac{m}{S}}\\
\lambda&=&\frac{S}{2rm}\\
\end{eqnarray}
å¼å¤å½¢ã«ãããå¹³åèªç±è¡ç¨ãæ±ããããã
Â
æ¿åæ¥è§¦ã®ç·æ°
次ã«æ¿åæ¥è§¦ããã«åºæ©ããå¹³åæéãæ±ãããããã¯ãã§å²ã£ã¦æ±ãããã¨ãã§ããã
Â
å¹³åãã¦ã«1åæ¿åæ¥è§¦ããã®ã§ãæ¿åæ¥è§¦é »åº¦ã¯ã®éæ°ã¨ãªãã
Â
ããã§ãçºãã¶ãã¤ãæéãèããã¨ããã人ç©ä¸äººã®æ¿åæ¥è§¦åæ°ã¯ä»¥ä¸ã®ããã«è¡¨ãããã
\begin{eqnarray}
i=\nu t=\frac{2rmvt}{S}
\end{eqnarray}
i_\mathrm{{total}}=\frac{mi}{2}=\frac{rm^2vt}{S}
\end{eqnarray}Â
\frac{\frac{rm_2^2vt}{S}}{\frac{rm_1^2vt}{S}}&=&0.2\\
\left(\frac{m_2}{m_1}\right)^2&=&0.2\\
\frac{m_2}{m_1}&=&\sqrt{0.2}\\
\frac{m_2}{m_1}&=&0.447 \cdots\\
\end{eqnarray}
éåã¨ãã«ã®ã¼ã®å®ç¾©ã(1/2)mv^2ãªã®ã¯ãªãã
æ¦è¦
éåã¨ãã«ã®ã¼ã¯ä»¥ä¸ã®ããã«å®ç¾©ããã¦ããã
\begin{eqnarray}
K=\frac{1}{2}mv^2
\end{eqnarray}
ãã®å¼ã¯ããç©ä½ã®éåã¨ãã«ã®ã¼ãããã®è³ªéã¨é度ã®2ä¹ã«æ¯ä¾ãããã¨ã表ããããããä¿æ°ã¨ãã¦ãæãã£ã¦ããããéåã¨ãã«ã®ã¼ã®å®ç¾©ã¨ããªãã£ãã®ã¯ãªãã ãããï¼
Â
ä¿æ°ãã¨ããã®ãåççãªãã¨ããçå é度éåã®å¼2種ã¨ãéåæ¹ç¨å¼ãç¨ãã¦å°ãã
Â
å°åº
ä¸å®ã®åãåããçå é度ç´ç·éåããç©ä½ãèãããç©ä½ã®é度ã表ãå¼ã¯ä»¥ä¸ã®ããã«æ¸ãããæå»ããå é度ããåé度ãã¨ããã
\begin{eqnarray}
v=v_0+at \tag{1}
\end{eqnarray}
Â
ç©ä½ã®ä½ç½®ã表ãå¼ã¯ä»¥ä¸ã®ããã«æ¸ãããåæä½ç½®ãã¨ããã
\begin{eqnarray}
x=x_0+v_0t+\frac{1}{2}at^2Â \tag{2}
\end{eqnarray}
Â
å¼(1)ã¨å¼(2)ãããæ¶å»ãããå¼(1)ãã«ã¤ãã¦å¤å½¢ããã
\begin{eqnarray}
at&=&v-v_0 \\
t&=&\frac{v-v_0}{a} \tag{1'}
\end{eqnarray}
Â
ãããå¼(2)ã«ä»£å ¥ããã
\begin{eqnarray} \require{cancel}
x&=&x_0+v_0t+\frac{1}{2}at^2Â \tag{2} \\
x&=&x_0+v_0\left(\frac{v-v_0}{a}\right)+\frac{1}{2}a \left( \frac{v-v_0}{a} \right)^2 \\
x&=&x_0+\frac{v_0v-v_0^2}{a}+\frac{1}{2a} \left( v-v_0 \right)^2 \\
x&=&x_0+\frac{\cancel{v_0v}-v_0^2}{a}+\frac{v^2-\cancel{2v_0v}+v_0^2}{2a}Â \\
x&=&x_0+\frac{v^2-v_0^2}{2a}Â \\
x-x_0&=&\frac{v^2-v_0^2}{2a} \tag{3}
\end{eqnarray}
å¼ãããæ¶ããã¨ã®é¢ä¿ãå¾ãããã
Â
éåæ¹ç¨å¼ãããã§ãããããã§ã¯ç©ä½ãåã¼ãããåãã¯ç©ä½ã®è³ªéã§ããããããå¼(3)ã«ä»£å ¥ãã¦ãæ¶å»ããã
\begin{eqnarray}
x-x_0&=&\frac{v^2-v_0^2}{2a} \tag{3}\\
x-x_0&=&\frac{v^2-v_0^2}{2\frac{f}{m}} \\
f(x-x_0)&=&\frac{m(v^2-v_0^2)}{2} \\
f(x-x_0)&=&\frac{1}{2}m(v^2-v_0^2) \\
\end{eqnarray}
Â
左辺ã¯ç©ä½ã«åãåã¼ãã¦ã座æ¨ããã«åãããã¨ãã®ä»äºã§ãããå³è¾ºã¯è³ªéã®ç©ä½ã®é度ãããã«å¤åããã¨ãã®éåã¨ãã«ã®ã¼ã®å¤åã«çããããã®å¼ã¯ãç©ä½ãå¤é¨ããä»äºãåããã¨ãããã«ç¸å½ãã¦éåã¨ãã«ã®ã¼ãå¤åããããã¨ã表ãã¦ããã
Â
ã¤ã¾ããããããä»äºã¨ç価ã«ããããã«éåã¨ãã«ã®ã¼ã®å®ç¾©ã決ã¾ã£ã¦ãã¦ããã®è¨ç®éç¨ã§ä¿æ°ãç¾ããã®ã§ãããã¾ããã®ããããã®åºã©ããã¯çå é度éåã§ä½ç½®ã表ãå¼ã®ä¸ã«ããé ã§ãããã¨ãåããã
ææ°ã®åºæ°ãå¤æãã
æ¦è¦
ã®ãããªææ°é¢æ°ãããã¨ããåºæ°ã好ããªæ°ã«å¤æããããã¨ããã°ãã°ããã
Â
ä¸ä¾ã¨ãã¦ãä»»æã®åºæ°ãæã¤ææ°é¢æ°ãå¾®åããããã«åºæ°ããã¤ãã¢æ°ã«å¤æããããéã«å¤æ°åé¢æ³ã®å¾®åæ¹ç¨å¼ã®è§£ã¨ãã¦ç¾ãããç®çã®åºæ°ãæã¤ææ°é¢æ°ã«å¤æããããããã¨ãæããããããã®æ¹æ³ãå°ãã
Â
å°åº
以ä¸ã®ææ°é¢æ°ã®åºæ°ãã«å¤æãããã¨ããã
\begin{eqnarray}
y=a^x
\end{eqnarray}
Â
両辺ã®ãã¨ãã対æ°é¢æ°ã®æ§è³ªãç¨ãã¦å¤å½¢ããã
\begin{eqnarray}
\log_b y= \log_b a^x\\
\log_b y= x\log_b a
\end{eqnarray}
Â
ã«ã¤ãã¦æ´çããã
\begin{eqnarray}
y= b^{x \log_b a}
\end{eqnarray}
Â
ãä»£å ¥ããã
\begin{eqnarray}
a^x = b^{x \log_b a}
\end{eqnarray}
対æ°é¢æ°ã®åºãããã«å¤æã§ããã
Â
ããã§å³è¾ºææ°é¨ã®ã¯ããå®æ°ã«ãªã£ã¦ãããã¨ã«æ³¨æãããã¯ãã¹ã¦ã®ææ°é¢æ°ã¯ãææ°é¨ã«å®æ°ãæãããã¨ã§åºæ°ãç¸äºã«å¤æã§ãããã¨ãæå³ããã
対æ°ã®åºãå¤æãã
æ¦è¦
ã®ãããªå¯¾æ°é¢æ°ãããã¨ããåºã好ããªæ°ã«å¤æããããã¨ããã°ãã°ããã
Â
ä¸ä¾ã¨ãã¦ãä»»æã®åºãæã¤å¯¾æ°é¢æ°ãå¾®åããããã«åºãã«å¤æããããéã«ãç©åãããªã©ãã¦ç¾ããèªç¶å¯¾æ°ãç®çã®åºãæã¤å¯¾æ°ã«å¤æããããããã¨ãæããããããã®æ¹æ³ãå°ãã
Â
å°åº
以ä¸ã®å¯¾æ°é¢æ°ã®åºãã«å¤æãããã¨ããã
\begin{eqnarray}
y= \log_a x
\end{eqnarray}
Â
ææ°é¢æ°ã¨ãã¦æ¸ãç´ãã
\begin{eqnarray}
a^y= x
\end{eqnarray}
Â
両辺ã®ãã¨ãã対æ°é¢æ°ã®æ§è³ªãç¨ãã¦å¤å½¢ããã
\begin{eqnarray}
\log_b a^y= \log_b x\\
y\log_b a= \log_b x
\end{eqnarray}
Â
ã«ã¤ãã¦æ´çããã
\begin{eqnarray}
y= \frac{\log_b x}{\log_b a}
\end{eqnarray}
Â
ãä»£å ¥ããã
\begin{eqnarray}
\log_a x = \frac{\log_b x}{\log_b a}
\end{eqnarray}
対æ°é¢æ°ã®åºãããã«å¤æã§ããã
Â
ããã§å³è¾ºåæ¯ã®ã¯ããå®æ°ã«ãªã£ã¦ãããã¨ã«æ³¨æãããã¯ãã¹ã¦ã®å¯¾æ°é¢æ°ã¯ãå®æ°ãæããã ãã§åºãç¸äºã«å¤æã§ãããã¨ãæå³ããã