æ¦è¦ é»æµåä½ã¢ã³ãã¢ã®æ§å®ç¾©ã®æ¦å¿µã説æããã å®é¨çäºå® 2æ¬ã®å¹³è¡ãªé ç·ã«ãåãæ¹åã®é»æµãæµãã¨å¼ãåãåãçãããããã§ãå¼ãåãåãå¢ããããã«ã¯ã 1. é»æµ1ãå¢ãã 2. é»æµ2ãå¢ãã 3. é»ç·ãè¿ã¥ãã 4. é»ç·ãé·ããã ã®ï¼ã¤ã®æ¹æ³â¦
æ¦è¦ å å°ä½ã®å¤å½¢ã ãå¤å°ä½ã®å å¾ãã®å軸ã±ã¼ãã«ãèãããå å°ä½ã¨å¤å°ä½ã®éã¯èªé»çã®èªé»ä½ã§æºããããå¤å°ä½ã¯æ¥å°ãã¦ããã¨ããããã®ç¡éé·ã®å軸ã±ã¼ãã«ã®ã1 mãããã®éé»å®¹éCã以ä¸ã®ããã«ãããããããã¨ã示ãã \begin{eqnarray}C â¦
æ¦è¦ åãåãç©ä½ããå¥ã®ç©ä½ã¨2åè¡çªããéã«å¹³åãã¦é²ããè·é¢ã®ãã¨ãå¹³åèªç±è¡ç¨ã¨å¼ã¶ãååãæ¿åæ¥è§¦ã®çºçåæ°ã人éã®2次å å¹³åèªç±è¡ç¨ããå°ããã å¤ãã®å ´åãå¹³åèªç±è¡ç¨ã¯3次å 空éã¨ç²åã§èããããé£è¡ããç²åã®å¹³åèªç±è¡ç¨ã¯ãæ°â¦
æ¦è¦ æ°åã³ããã¦ã£ã«ã¹COVID19ã®çºçã«ä¼´ããå½å ã§ãå¤åºç¦æ¢è¦è«ãåºããã¦ããã人ã¨äººã¨ã®æ¿åæ¥è§¦ã8å²æ¸ããã°ã³ããã®è延ãé²ããã¨ãããã人ã®å¤åºã8å²æ¸ããå¿ è¦ãããã®ã ãããï¼æ¥è§¦ã®åæ°ãå¼ã§è¡¨ãã人ã®å¤åºã55%æ¸ããã°ç®çãéæã§ãâ¦
æ¦è¦ éåã¨ãã«ã®ã¼ã¯ä»¥ä¸ã®ããã«å®ç¾©ããã¦ããã \begin{eqnarray}K=\frac{1}{2}mv^2\end{eqnarray} ãã®å¼ã¯ããç©ä½ã®éåã¨ãã«ã®ã¼ãããã®è³ªéã¨é度ã®2ä¹ã«æ¯ä¾ãããã¨ã表ããããããä¿æ°ã¨ãã¦ãæãã£ã¦ããããéåã¨ãã«ã®ã¼ã®å®ç¾©ã¨ããªãâ¦
æ¦è¦ ã®ãããªææ°é¢æ°ãããã¨ããåºæ°ã好ããªæ°ã«å¤æããããã¨ããã°ãã°ããã ä¸ä¾ã¨ãã¦ãä»»æã®åºæ°ãæã¤ææ°é¢æ°ãå¾®åããããã«åºæ°ããã¤ãã¢æ°ã«å¤æããããéã«å¤æ°åé¢æ³ã®å¾®åæ¹ç¨å¼ã®è§£ã¨ãã¦ç¾ãããç®çã®åºæ°ãæã¤ææ°é¢æ°ã«å¤æãâ¦
æ¦è¦ ã®ãããªå¯¾æ°é¢æ°ãããã¨ããåºã好ããªæ°ã«å¤æããããã¨ããã°ãã°ããã ä¸ä¾ã¨ãã¦ãä»»æã®åºãæã¤å¯¾æ°é¢æ°ãå¾®åããããã«åºãã«å¤æããããéã«ãç©åãããªã©ãã¦ç¾ããèªç¶å¯¾æ°ãç®çã®åºãæã¤å¯¾æ°ã«å¤æããããããã¨ãæããããããâ¦
æ¦è¦ ååãæ¾å°æ§ç©è³ªã®åæ°ã表ãå¾®åæ¹ç¨å¼ãå°ãããå¾®åæ¹ç¨å¼ã解ãã¦æ¾å°æ§ç©è³ªãæ¸ã£ã¦ããæ§åãå¼ã§è¡¨ãã å¼ è§£ãããå¾®åæ¹ç¨å¼ãããä¸åº¦æ¸ãã \begin{eqnarray}\frac{dN(t)}{dt}=-\lambda N(t)\end{eqnarray} å¤æ°åé¢æ³ã§è§£ããã¨ãã¦ã両辺â¦
æ¦è¦ æ¾å°æ§ååãå´©å£ãã¦æ®ãã®åæ°ãæ¸ã£ã¦ããæ§åãå¾®åæ¹ç¨å¼ããå°ããåæ¸æã®æ¦å¿µãç解ãããä»åã¯è§£ãããå¾®åæ¹ç¨å¼ãä½ãã¨ããã¾ã§èª¬æããã èãæ¹ æ¾å°æ§ååã¯å ¨ã¦ã®æå»ã§ã©ã³ãã ã«ä¸å®ç¢ºçã§å´©å£ããããã®ãä¸å®ç¢ºçã§æ¸ã£ã¦ããããâ¦
æ¦è¦ åä¸ããçºæãããéºè·¡ãåç³ãä½å¹´åã®ãã®ãªã®ãåæããããã®ææ³ã年代測å®ãå¼ã§ç¤ºãã åç çç´ ã®æ¾å°æ§åä½ä½ã¯å®å®ç·ã«ããæ¯å¹´çç£ãããåæã«Î²å´©å£ã«ããæ¯å¹´æ¶æ» ãã¦ããããããã®å¹³è¡¡ã«ããå°çä¸ã®çç´ ååã«å ããã®å²åã¯ã«ä¿ããâ¦
æ¦è¦ 次ã¼ã¼ã¿é¢æ°ã®åæå¤å®ãè¡ããããããã¾ã§ã«ã¯ç¡é大ã«çºæ£ããã¯2ãããå°ããæ°ã«åæãããã¨ã示ãã¦ããã ãå®éããã¤ã«åæããã®ããæ±ããã以ä¸ã«ãæ¸ãä¸ãã¦ããã \begin{eqnarray} \zeta(2)&=&\sum_{k=1}^{\infty}\frac{1}{k^2}\ &=&â¦
ãã¯ã¹ã¦ã§ã«æ¹ç¨å¼ã¨ã¯ é»ç£æ°ã«é¢ããå®é¨çäºå®ãã¹ã¿ã¼ãã¨ãã¦ãè«ççèå¯(é»å ´ã¨ç£å ´)ãå ããå¾®åæ¹ç¨å¼ã§è¡¨ãããã®ã 4ã¤ã®å®é¨çäºå®ã4ã¤ã®æ¹ç¨å¼ã§è¡¨ãããããã¯ã¹ã¦ã§ã«æ¹ç¨å¼ã解ããã¨ã§ãé»ç£æ³¢ã®åå¨ããå ãã¾ãé»ç£æ³¢ã§ãããã¨ãªã©ã®â¦
æ¦è¦ ååç´°ããä¸æ¬¡å ã¨ã¿ãªããééã®æ¸©åº¦åå¸ã¨ããã®çµæå¤åãèããããã¾ã解ãã¹ãå¾®åæ¹ç¨å¼ãå°åºããã ééä¸ã®åº§æ¨ããæéãã温度ãã¨ããã ã¾ããç±ã®æµããèããã å°åº ç±ã®æµãã«ã¤ãã¦ã®å¼ ç±ã®æµãã¯æ¸©åº¦ã®å¾é ã«æ¯ä¾ããã(ãã¼ãªã¨â¦
æ¦è¦ 以åã弧ã®é·ããç¨ãã¦å°åºããçå¼ããç¨ãã¦ãåå¾ãæã¤åã®é¢ç©ãå°åºããã å°åº åå¾ã®åã«å æ¥ããæ£è§å½¢ã¨åã«å¤æ¥ããæ£è§å½¢ãèãããã®å ´åãå³ã«ç¤ºãã ä¸å³ã®ããã«ãåã¨æ£è§å½¢ããçåãã¦èããã ã¾ãäºã¤ã®ç´è§ä¸è§å½¢ã¨åãåãããâ¦
循ç°è«æ³ 以åãæåã®é¢ç©ãæã¿æã¡ãã¦ãå°åºããããã®ææ³ã¯åãããããããå®ã¯å¾ªç°è«æ³ã®åé¡ãããã åå¾ãæã¤åã®é¢ç©ãã§ãããã¨ã¯å®ç¾©ããããã¨ãèªæãªãã¨ã§ã¯ãªãã証æããã«ã¯ä¸è§é¢æ°ã®ç©åãå¿ è¦ã§ããããã®éã«æ¢ã«ãç¥ã£ã¦ããå¿ â¦
Markdownã«ã¼ã«ã®æ¦è¦ ã¯ã¦ãªããã°ã§ã¯Markdownè¨æ³ã使ç¨ã§ãããHTMLã³ã¼ãã®ä»£ããã«ãç¹å®ã®ã³ãã³ãæåã使ã£ã¦æãç°¡åã«ãã¼ã¯ã¢ããããè¨æ³ã§ããã ã³ãã³ãæåèªä½ã¯ããã°ã«è¡¨ç¤ºãããªãããç´åã«ã¹ã©ãã·ã¥\ãã¤ããã¨ã³ãã³ãæåããã®ã¾â¦
æ¦è¦ ä»»æã®ã«ããã¦ãè§ã«å¯¾åãã辺ã®é·ãããç¨ãã¦è¡¨ãã以ä¸ã«è¡¨ãããä½å¼¦å®çã証æããã \begin{eqnarray}c^2=a^2+b^2-2ab \cos C\end{eqnarray} å°åº ãéè§ã®å ´åãååãã£ãã®ã§ãä»åã¯å³ã®ããã«ãéè§ã®å ´åãèããã ç¹ãã辺ã«åç·ãå¼ãâ¦
æ¦è¦ ä»»æã®ã«ããã¦ãè§ã«å¯¾åãã辺ã®é·ãããç¨ãã¦è¡¨ãã以ä¸ã«è¡¨ãããä½å¼¦å®çã証æããã \begin{eqnarray}c^2=a^2+b^2-2ab \cos C\end{eqnarray} å°åº ä»åã¯å³ã®ããã«ããéè§ã®å ´åãèããã ç¹ãã辺ã«åç·ãå¼ããè£å©ç·ã¨ããã交ç¹ãã¨ããâ¦
æ¦è¦ å³ã®ããã«ãåå¾ã®å(ç·)ã¨ãäºã¤ã®ç´è§ä¸è§å½¢(éã赤)ãèããããããã®ç´è§ä¸è§å½¢ã¨ãåãåãããæå½¢ã®é¢ç©ãæ¯è¼ãã¦ãä¸è§é¢æ°ã®å¾®åã«å¿ è¦ãªãå°åºããã å°åº ã¾ãäºã¤ã®ç´è§ä¸è§å½¢ã¨åãåãããæå½¢ã®é¢ç©ããåã®åå¾ã¨ä¸å¿è§ãç¨ãã¦è¡¨ãâ¦
å°åº 以åå°åºããã®ãã¯ãã¼ãªã³å±éãæ¸ãä¸ãããã®ãã¯ãã¼ãªã³å±éã¯ç¡éã®åæåå¾ãæã¡ãæ¬è³ªçã«ã¨çããã®ã§ãã£ãã \begin{eqnarray} \sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots \end{eqnarray} ã¨ãã¦ä¸¡è¾ºãã§å²ãã â¦
èæ¯ æè¿ãã¬ã°ã¸ããåé¡ãã¢ãããã¤ã®ãªã¹ãEUé¢è±ã決å®ãããã®ã®ããã®é¢è±ããã»ã¹ã決ã¾ãããç· ãåãã ããè¿«ã£ã¦ããç¶æ³ãªã®ã ã ç· ãåããæ¥ãã¨ä½ã決ã¾ã£ã¦ãªãã®ã«å¼·å¶çã«EUé¢è±ã¨ãªã£ã¦å¤§æ··ä¹±ãæãã¨ãããä¸ä½ä½æ ãããªãã¨ã«ãªã£ã¦â¦
ååã¾ã§ã«ããªã¤ã©ã¼ã®å ¬å¼ãç¨ãã¦ä¸è§é¢æ°ãææ°é¢æ°å½¢å¼ã§è¡¨ãããã¨ã示ããã ãã®å½¢å¼ã§ãä¸è§é¢æ°ã¨ãã¦ã®æ§è³ªãä¿ããã¦ãããã¨ããããã¤ãã®ä»£è¡¨çãªæ§è³ªãã確èªããã ã¨ã®ææ°é¢æ°è¡¨è¨ãå度æ¸ãã \begin{eqnarray}\sin x&=&\frac{e^{ix}-e^â¦
æ¦è¦ ãªã¤ã©ã¼ã®å ¬å¼ãåãå ¥ããã¨ä¸è§é¢æ°ãå¥ã®å½¢å¼ã§è¡¨ããã å°åº ãªã¤ã©ã¼ã®å ¬å¼ãå度æ¸ãã \begin{eqnarray}e^{ix}=\cos x+i\sin x\end{eqnarray} å¼ä¸ã®ãã«ç½®ãæãã¦ã¿ãã \begin{eqnarray}e^{-ix}&=&\cos (-x)+i\sin (-x)\\&=&\cos x-i\sin x\â¦
æ¦è¦ ããã¾ã§ã«ã¨ã®ãã¯ãã¼ãªã³å±éãå°åºãã¦ããã ã®ãã¯ãã¼ãªã³å±é\begin{eqnarray}\displaystyle \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots\end{eqnarray} ã®ãã¯ãã¼ãªã³å±é \begin{eqnarray}\displaystyle \cos x=1-\frâ¦
æ¦è¦ åºæºç¹ãã¨ãããã¤ã©ã¼å±éã¯ç¹ã«æç¨ãªãã¨ãããããã¯ãã¼ãªã³å±éã¨å¼ã°ãããã®ãã¯ãã¼ãªã³å±éãè¡ãã å°åº ãå¾®åãã¦ãä»£å ¥ãããæ±ããã ã¾ãã§ããã ä¸éå¾®å \begin{eqnarray}f'(x)&=&e^x\\f'(0)&=&1\\\end{eqnarray} äºéå¾®å \begin{â¦
æ¦è¦ åºæºç¹ãã¨ãããã¤ã©ã¼å±éã¯ç¹ã«æç¨ãªãã¨ãããããã¯ãã¼ãªã³å±éã¨å¼ã°ãããã®ãã¯ãã¼ãªã³å±éãè¡ãã å°åº ãå¾®åãã¦ãä»£å ¥ãããæ±ããã ã¾ãã§ããã ä¸éå¾®å \begin{eqnarray}f'(x)&=&-\sin x\\f'(0)&=&0\\\end{eqnarray} äºéå¾®å \beâ¦
æ¦è¦ åºæºç¹ãã¨ãããã¤ã©ã¼å±éã¯ç¹ã«æç¨ãªãã¨ãããããã¯ãã¼ãªã³å±éã¨å¼ã°ãããã®ãã¯ãã¼ãªã³å±éãè¡ãã å°åº ãå¾®åãã¦ãä»£å ¥ãããæ±ããã ã¾ãã§ããã ä¸éå¾®å \begin{eqnarray}f'(x)&=&\cos x\\f'(0)&=&1\\\end{eqnarray} äºéå¾®å \begâ¦
æ¦è¦ 調åç´æ°ã®æ£è² ã1é ãã¨ã«å ¥ãæ¿ããã交代調åç´æ°ã®åæå¤å®ãè¡ãã å ¨é ããã©ã¹ã®èª¿åç´æ°ã¯ç¡é大ã«çºæ£ãã¦ãã¾ã£ãããããã¯ååã®é ããã¤ãã¹ãªã®ã§ãããåæããããç´æ°ã¨è¨ããã å°åº 足ãåããããæ°åã®ä¸è¬é ãã¨æ¸ããç´æ°ã代æ°â¦
æ¦è¦ ååã«ç¶ãã¦ãã®ãã¯ãã¼ãªã³å±é(ãåºæºã¨ãããã¤ã©ã¼å±é)ãè¨ç®ããã ããã¯ãã¼ãªã³å±éããã¨ä»¥ä¸ã®ãããªã¹ãç´æ°ã§è¡¨ãããã¨ãåå示ããã \begin{eqnarray}f(x)&=&x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\\&=&\sum_{n=1}^â¦
æ¦è¦ ãã©ã³ãã¼ã«ã®åæå¤å®æ³ã使ã£ã¦ãã¤ã©ã¼å±éã®åæåå¾ãè¨ç®ããã ãã©ã³ãã¼ã«ã®åæå¤å®æ³(åæ²) ç´æ°ãåæãããã©ããã以ä¸ã®å¼ã§å¤å®ã§ããã 足ãåããããæ°åã以ä¸ã®æ¡ä»¶ãæºããã¨ããç´æ°ã¯åæããã \begin{eqnarray}\lim_{n \to â¦