A4の宇宙

数学と物理をA4ノートに収まる範囲で。

2019-03-01から1ヶ月間の記事一覧

xが0に近い時のsin xの性質、面積を用いる方法

概要 図のように、半径の円(緑)と、二つの直角三角形(青、赤)を考える。これらの直角三角形と、切り取られる扇形の面積を比較して、三角関数の微分に必要なを導出する。 導出 まず二つの直角三角形と切り取られる扇形の面積を、円の半径と中心角を用いて表す…

xが0に近い時のsin xの性質 マクローリン展開を用いる方法

導出 以前導出したのマクローリン展開を書き下す。このマクローリン展開は無限の収束半径を持ち、本質的にと等しいのであった。 \begin{eqnarray} \sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots \end{eqnarray} として両辺をで割る。 …

民主主義は三択に弱い

背景 最近ブレグジット問題がアツい。イギリスがEU離脱を決定したものの、その離脱プロセスが決まらず、締め切りだけが迫っている状況なのだ。 締め切りが来ると何も決まってないのに強制的にEU離脱となって大混乱を招くという。一体何故こんなことになって…

指数表記された三角関数の手触りを確かめる

前回までに、オイラーの公式を用いて三角関数を指数関数形式で表せることを示した。 この形式でも三角関数としての性質が保たれていることを、いくつかの代表的な性質から確認する。 との指数関数表記を再度書く。 \begin{eqnarray}\sin x&=&\frac{e^{ix}-e^…

オイラーの公式から導かれる三角関数の記法

概要 オイラーの公式を受け入れると三角関数を別の形式で表せる。 導出 オイラーの公式を再度書く。 \begin{eqnarray}e^{ix}=\cos x+i\sin x\end{eqnarray} 式中のをに置き換えてみる。 \begin{eqnarray}e^{-ix}&=&\cos (-x)+i\sin (-x)\\&=&\cos x-i\sin x\…