2018-11-01ãã1ã¶æéã®è¨äºä¸è¦§
ç©ä½ãè½ä¸ããæãã©ã®ãããªé度ã§ã©ã®ãããªè»éããã©ãããå¾®åæ¹ç¨å¼ããå°ãã空æ°æµæãªããã¼ã¸ã§ã³ã¯ä»¥åãã£ãã®ã§ãä»åã¯ãããã¼ã¸ã§ã³ãè¨ç®ããã ã¾ãã¯éåæ¹ç¨å¼ãæ¸ããç©ä½ã®è³ªéããç©ä½ã®å é度ããç©ä½ã«åãåãã¨ããã \begin{eqâ¦
ç©ä½ãè½ä¸ããæãã©ã®ãããªé度ã§ã©ã®ãããªè»éããã©ãããå¾®åæ¹ç¨å¼ããå°ããä»åã¯ç©ºæ°æµæãç¡è¦ãããã¨ã«ããã ã¾ãã¯éåæ¹ç¨å¼ãæ¸ããç©ä½ã®è³ªéããç©ä½ã®å é度ããç©ä½ã«åãåãã¨ããã \begin{eqnarray}ma=f\end{eqnarray} ç©ä½ã«ã¯éâ¦
åé¡ å³ã®ããã«ãç´è§ä¸è§å½¢ABCã辺ABãç´å¾ã¨ããååã辺BCãç´å¾ã¨ããååã辺CAãç´å¾ã¨ããååããããå³ã®éãé åã®é¢ç©ã¯ããã¤ãï¼ åç â¿ABCã®é¢ç©ã¨3ã¤ã®ååã®é¢ç©ãè¨ç®ããã \begin{eqnarray}S_1&=&\frac{CA \times BC}{2}\\S_2&=&\frac{1â¦
ã¿ã¬ã¹ã®å®çã®éã証æããã ããªãã¡ãâ Cãç´è§ã¨ããç´è§ä¸è§å½¢ABCã¨ãé ç¹ABCãéãåãèããã¨ããå³ã®ããã«è¾ºABãåã®ç´å¾ã«ãªããã¨ã示ãã 証æ 辺ABã®ä¸ç¹ãPã¨ããç¹Pããâ Cã«è£å©ç·ãå¼ãã PCã¨å¹³è¡ã«ç¹Aããæ°ããªè£å©ç·ãå¼ãã辺BCã延é·â¦
ã¿ã¬ã¹ã®å®çã証æããã ããªãã¡ãå³ã®ãããªãç´å¾ABã«å¯¾ããåå¨è§â Cãã常ã«ç´è§ã«ãªããã¨ã示ãã åã®ä¸å¿Oããç´è§Cã«å¯¾ãã¦è£å©ç·ãå¼ããã ãã®æã辺OAãOBãããã¦OCã¯å ¨ã¦åå¾ãªã®ã§åãé·ãã§ããã ãã®ãããâ³AOCã¨â³BOCã¯ããããäºç辺â¦
èãçæ®»ã®ä½ç©ãæ±ãããã çæ®»ã¯ãä¸å¿ãåãããã大ããçã¨å°ããçã¨ã«æã¾ããé åã¨è¨ããã®ã§ã大ããçã®åå¾ããå°ããçã®åå¾ãã¨ããã¨ãä½ç©ã¯ä»¥ä¸ã®å¼ã§è¡¨ããã \begin{equation}V=\frac{4}{3}\pi (r+dr)^3-\frac{4}{3}\pi r^3\end{equatiâ¦
ç´°ã輪ã®é¢ç©ãæ±ãããã 輪ã¯ãä¸å¿ãåãããã大ããåã¨å°ããåã¨ã«æã¾ããé åã¨è¨ããã®ã§ã大ããåã®åå¾ããå°ããåã®åå¾ãã¨ããã¨ãé¢ç©ã¯ä»¥ä¸ã®å¼ã§è¡¨ããã \begin{equation}S=\pi (r+dr)^2-\pi r^2\end{equation} å¼ãå±éããã \begin{â¦
ææ°é¢æ°ããå¤æ°ã§å¾®åããããå¾®åã®å®ç¾©ã«å¾ã£ã¦ä»£å ¥ããã \begin{equation}y'=\lim_{h \to 0}\frac{a^{x+h}-a^x}{h}\end{equation} ããããææ°é¢æ°ã®æ§è³ªãç¨ãã¦å¼ãå¤å½¢ãã¦ãããã¾ãå³è¾ºãã§æ¬ãã \begin{eqnarray}y'&=&\lim_{h \to 0}\frac{a^{â¦
é£ã¬ãã£å¤§çæ»ã®ç¢ºç å½ãã確ç1%ã®100é£ã¬ãã£ã®çæ»ç ã«ã¤ãã¦ä»¥åæ¸ãããã§ã¯ãå½ãã確ç0.1%ã®1000é£ã¬ãã£ããå½ãã確ç0.01%ã®10000é£ã¬ãã£ã®çæ»çã¯ã©ããªãã ãããï¼ã¨ã¯ã»ã«ã§è¨ç®ãã¦ã¿ãã å½ãã確ç1%ã®100é£ã¬ã㣠\begin{equation}0â¦
対æ°é¢æ°ããå¤æ°ã§å¾®åããããå¾®åã®å®ç¾©ã«å¾ã£ã¦ä»£å ¥ããã \begin{equation}y'=\lim_{h \to 0} \frac{\log_{a} {(x+h)}-\log_a x}{h}\end{equation} ãããã対æ°é¢æ°ã®æ§è³ªãç¨ãã¦å¼ãå¤å½¢ãã¦ããã \begin{eqnarray}y'&=&\lim_{h \to 0} \frac{\log_â¦
ã¬ã㣠â5(å½ãã)ã1%ã®ç¢ºçã§æåºãããã¬ãã£ã100é£ã§åããã¾ãã100åå¼ããã ãã大ä½å½ããã ããã æ¬å½ã«ããã ãããï¼ããã¬ãã£ã§ãªãã¦100æã®ã¯ã¸ãªãã°ãå¤ãããã³ã«å¤ããæ¸ã£ã¦ããã®ã§100åå¼ãã°1æã¯å¿ ãå½ããã§ããããããã¬ãã£ã§â¦
ä¾é¡ 以ä¸ã®æ¼¸åå¼ãç¹æ§æ¹ç¨å¼ãç¨ãã¦è§£ãããéããå¼ã§è¡¨ãã \begin{eqnarray}a_{n+2}&=&2a_{n+1}-2a_n\\a_0&=&3\\a_1&=&5\end{eqnarray}ç¹æ§æ¹ç¨å¼ã¯ä»¥ä¸ã®å½¢ã«ãªãã \begin{eqnarray}x^2-2x+2=0\end{eqnarray} 2次é¢æ°ã®è§£ã®å ¬å¼ãç¨ãã¦ç¹æ§æ¹ç¨å¼â¦
以ä¸ã®æ¼¸åå¼ã§è¡¨ãããæ°åããã£ããããæ°åã¨å¼ã¶ãç¹æ§æ¹ç¨å¼ãç¨ãã¦ããã£ããããæ°åã®ä¸è¬é ãæ±ããã \begin{eqnarray}F_{n+2}&=&F_{n+1}+F_{n}\\F_0&=&0\\F_1&=&1\\\end{eqnarray} ãã®æ¼¸åå¼ã®ç¹æ§æ¹ç¨å¼ãä½ãã¨ã¨ãªããå æ°å解ã¯å®¹æã§ãªãâ¦
ç¹æ§æ¹ç¨å¼ã¨ã¯ä½ãï¼ a4.hateblo.jp ãã¡ããåç § ç¹æ§æ¹ç¨å¼ãé解ãæã¤å ´å ç¹æ§æ¹ç¨å¼ãé解ãæã¤å ´åçæ¯æ°åã®å¼ãä¸ã¤ãããªãã®ã§ãå·®ãåã£ã¦ãåé¤ããææ³ã¯ä½¿ããªãã ãããå¥ã®æ¹æ³ã§è§£ããã¾ãç¹æ§æ¹ç¨å¼ã®è§£ã両æ¹ã¨ãã¨æ¸ãã \begin{eqnâ¦