ä¸é 漸åå¼ ç¹æ§æ¹ç¨å¼ã®è§£ãè¤ç´ æ°ã®å ´å
ä¾é¡
以ä¸ã®æ¼¸åå¼ãç¹æ§æ¹ç¨å¼ãç¨ãã¦è§£ãããéããå¼ã§è¡¨ãã
\begin{eqnarray}
a_{n+2}&=&2a_{n+1}-2a_n\\
a_0&=&3\\
a_1&=&5
\end{eqnarray}
ç¹æ§æ¹ç¨å¼ã¯ä»¥ä¸ã®å½¢ã«ãªãã
\begin{eqnarray}
x^2-2x+2=0
\end{eqnarray}
Â
2次é¢æ°ã®è§£ã®å ¬å¼ãç¨ãã¦ç¹æ§æ¹ç¨å¼ã解ãã
\begin{eqnarray}
x&=&\frac{2\pm\sqrt{4-8}}{2}\\
&=&\frac{2\pm\sqrt{-4}}{2}\\
&=&1 \pm i
\end{eqnarray}
Â
ç¹æ§æ¹ç¨å¼ã®2ã¤ã®è§£ãç¨ãã¦ã漸åå¼ã2ã¤ã®çæ¯æ°åã«å¤æããã
\begin{eqnarray}
a_{n+1}-(1+i)a_n=(1-i)^n[a_1-(1+i)a_0]\\
a_{n+1}-(1-i)a_n=(1+i)^n[a_1-(1-i)a_0]
\end{eqnarray}
Â
ã¨ãä»£å ¥ããã
\begin{eqnarray}
a_{n+1}-(1+i)a_n=(1-i)^n[5-3(1+i)]\\
a_{n+1}-(1-i)a_n=(1+i)^n[5-3(1-i)]
\end{eqnarray}
Â
å³è¾ºãè¨ç®ããã
\begin{eqnarray}
a_{n+1}-(1+i)a_n=(1-i)^n(2-3i)\\
a_{n+1}-(1-i)a_n=(1+i)^n(2+3i)
\end{eqnarray}
Â
ä¸ã®å¼ããä¸ã®å¼ã辺ã å¼ãã¦ãæ¶å»ããã
\begin{eqnarray} \require{cancel}
2ia_n&=&(1+i)^n(2+3i)-(1-i)^n(2-3i)\\
\end{eqnarray}
Â
両辺ãã§å²ã£ã¦ä¸è¬é ãæ±ããããã
\begin{eqnarray}
\underline{a_n=\frac{(1+i)^n(2+3i)-(1-i)^n(2-3i)}{2i}}
\end{eqnarray}
è¤ç´ æ°ã«ãªã£ã¦ãã¦ä¸è¦ééã£ã¦ããããã«è¦ãããâ¦
Â
æ¤ç®
漸åå¼ããã
\begin{eqnarray}
a_0&=&3\\
a_1&=&5\\
a_2=2\cdot5-2\cdot3=10-6&=&4\\
a_2=2\cdot4-2\cdot5=8-10&=&-2\\
\end{eqnarray}
Â
ä¸è¬é ãã
\begin{eqnarray}
a_0&=&\frac{(1+i)^0(2+3i)-(1-i)^0(2-3i)}{2i}\\
&=&\frac{(2+3i)-(2-3i)}{2i}\\
&=&3\\
a_1&=&\frac{(1+i)^1(2+3i)-(1-i)^1(2-3i)}{2i}\\
&=&\frac{(2+3i+2i-3)-(2-3i-2i-3)}{2i}\\
&=&5\\
a_2&=&\frac{(1+i)^2(2+3i)-(1-i)^2(2-3i)}{2i}\\
&=&\frac{(1+2i-1)(2+3i)-(1-2i-1)(2-3i)}{2i}\\
&=&4\\
a_3&=&\frac{(1+i)^3(2+3i)-(1-i)^3(2-3i)}{2i}\\
&=&\frac{(1+3i-3-i)(2+3i)-(1-3i-3+i)(2-3i)}{2i}\\
&=&-2\\
\end{eqnarray}
Â
ããã¾ã§åã£ã¦ãããã¨ã確ããããããã¾ãèæ°åä½ã¯å ¨ã¦è¨ç®ä¸ã«æã¡æ¶ããã¦ãããã¨ãåããã