å¾®å
循ç°è«æ³ 以åãæåã®é¢ç©ãæã¿æã¡ãã¦ãå°åºããããã®ææ³ã¯åãããããããå®ã¯å¾ªç°è«æ³ã®åé¡ãããã åå¾ãæã¤åã®é¢ç©ãã§ãããã¨ã¯å®ç¾©ããããã¨ãèªæãªãã¨ã§ã¯ãªãã証æããã«ã¯ä¸è§é¢æ°ã®ç©åãå¿ è¦ã§ããããã®éã«æ¢ã«ãç¥ã£ã¦ããå¿ â¦
å°åº 以åå°åºããã®ãã¯ãã¼ãªã³å±éãæ¸ãä¸ãããã®ãã¯ãã¼ãªã³å±éã¯ç¡éã®åæåå¾ãæã¡ãæ¬è³ªçã«ã¨çããã®ã§ãã£ãã \begin{eqnarray} \sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots \end{eqnarray} ã¨ãã¦ä¸¡è¾ºãã§å²ãã â¦
ææ°é¢æ°ããå¤æ°ã§å¾®åããããå¾®åã®å®ç¾©ã«å¾ã£ã¦ä»£å ¥ããã \begin{equation}y'=\lim_{h \to 0}\frac{a^{x+h}-a^x}{h}\end{equation} ããããææ°é¢æ°ã®æ§è³ªãç¨ãã¦å¼ãå¤å½¢ãã¦ãããã¾ãå³è¾ºãã§æ¬ãã \begin{eqnarray}y'&=&\lim_{h \to 0}\frac{a^{â¦
対æ°é¢æ°ããå¤æ°ã§å¾®åããããå¾®åã®å®ç¾©ã«å¾ã£ã¦ä»£å ¥ããã \begin{equation}y'=\lim_{h \to 0} \frac{\log_{a} {(x+h)}-\log_a x}{h}\end{equation} ãããã対æ°é¢æ°ã®æ§è³ªãç¨ãã¦å¼ãå¤å½¢ãã¦ããã \begin{eqnarray}y'&=&\lim_{h \to 0} \frac{\log_â¦