対æ°é¢æ°ã®å¾®å
対æ°é¢æ°ããå¤æ°ã§å¾®åããããå¾®åã®å®ç¾©ã«å¾ã£ã¦ä»£å ¥ããã
\begin{equation}
y'=\lim_{h \to 0} \frac{\log_{a} {(x+h)}-\log_a x}{h}
\end{equation}
Â
ãããã対æ°é¢æ°ã®æ§è³ªãç¨ãã¦å¼ãå¤å½¢ãã¦ããã
\begin{eqnarray}
y'&=&\lim_{h \to 0} \frac{\log_a \left( \frac{x+h}{x} \right)}{h}\\
&=&\lim_{h \to 0} \frac{\log_a \left( 1+\frac{h}{x} \right)}{h}\\
&=&\lim_{h \to 0} \log_a \left( 1+\frac{h}{x} \right)^{\frac{1}{h}}
\end{eqnarray}
Â
ããã§æ°ããªå¤æ°ãå°å ¥ãããæ¶å»ãããã¨æ¸ãããã¾ããã®ã¨ãã§ããã
\begin{eqnarray}
y'&=&\lim_{t \to 0} \log_a \left( 1+t \right)^{\frac{1}{tx}}\\
&=&\lim_{t \to 0} \frac{1}{x} \log_a \left( 1+t \right)^{\frac{1}{t}}\\
&=& \frac{1}{x} \lim_{t \to 0} \log_a \left( 1+t \right)^{\frac{1}{t}}\\
\end{eqnarray}
対æ°ã®æ§è³ªãç¨ãã¦ãã®å¤ã«åºããã
Â
ããªãã¡ãã¯ã«ä½ããã®ä¿æ°ãããã£ãå½¢ã«ãªããããããã®ä¿æ°Â ã1ã«çãããã°ãã¨ã·ã³ãã«ã«æ¸ããã®ã§ããããã
Â
ä¿æ° ãæãç«ã¤ã®ã¯ã対æ°ã®åºã¨çæ°ãçããæãããªãã¡ã®æã§ãããå®éã«ã¨ã¯ã»ã«çã§å³è¾ºãè¨ç®ããã¨ãã¨ããä¸ã¤ã®ç¡çæ°ã«åæããã
Â
ã¤ã¾ã対æ°ã®åºãã®æãä¿æ°ã¯1ã¨ãªããã¨æ¸ããããã®æã®åºããã¤ãã¢æ°ã¨å¼ã¶ã
Â
ã¾ãããåºã¨ãã対æ°ãèªç¶å¯¾æ°ã¨å¼ã³ããçç¥ãã¦ã¨æ¸ãã¦ãããã
Â
ä»»æã®åºãæã¤å¯¾æ°é¢æ°ã®å¾®å
対æ°ã®åºã®å¤æãç¨ããã°ã以å¤ã®åºãæã¤å¯¾æ°é¢æ°ã®å¾®åãå¯è½ã«ãªããããä¸åº¦ã®å¾®åãèããã
\begin{eqnarray}
y&=&\log_a x\\
a^y&=&x\\
\end{eqnarray}
ææ°é¢æ°ã¨ãã¦æ¸ãç´ããã
Â
両辺ã®èªç¶å¯¾æ°ãåãã¨ã
\begin{eqnarray}
\ln {a^y}&=&\ln {x}\\
y\ln {a}&=&\ln {x}\\
y&=&\frac{\ln {x}}{\ln {a}}\\
\end{eqnarray}
ã®åºãã«å¤æåºæ¥ãã
Â
\begin{eqnarray}
y'&=&\frac{1}{\ln {a}}(\ln x)'\\
&=&\underline{\frac{1}{x\ln a}}
\end{eqnarray}
ä»»æã®åºãæã¤å¯¾æ°é¢æ°ãå¾®åã§ããã