ææ°è¡¨è¨ãããä¸è§é¢æ°ã®æè§¦ãã確ããã
ååã¾ã§ã«ããªã¤ã©ã¼ã®å ¬å¼ãç¨ãã¦ä¸è§é¢æ°ãææ°é¢æ°å½¢å¼ã§è¡¨ãããã¨ã示ããã
Â
ãã®å½¢å¼ã§ãä¸è§é¢æ°ã¨ãã¦ã®æ§è³ªãä¿ããã¦ãããã¨ããããã¤ãã®ä»£è¡¨çãªæ§è³ªãã確èªããã
Â
ã¨
ã®ææ°é¢æ°è¡¨è¨ãå度æ¸ãã
\begin{eqnarray}
\sin x&=&\frac{e^{ix}-e^{-ix}}{2i}
\end{eqnarray}
Â
\begin{eqnarray}
\cos x&=&\frac{e^{ix}+e^{-ix}}{2}
\end{eqnarray}
Â
Â
ã確ãããã
左辺ãå¤å½¢ãã¦å³è¾ºãç®æãã
\begin{eqnarray}
\sin 0&=&\frac{e^{i0}-e^{-i0}}{2i}\\&=&\frac{1-1}{2i}\\&=&0
\end{eqnarray}
åã£ã¦ããã
Â
Â
ã確ãããã
左辺ãå¤å½¢ãã¦å³è¾ºãç®æãã
\begin{eqnarray}
\cos 0&=&\frac{e^{i0}+e^{-i0}}{2}\\&=&\frac{1+1}{2}\\&=&1
\end{eqnarray}
åã£ã¦ããã
Â
Â
ã確ãããã
左辺ãå¤å½¢ãã¦å³è¾ºãç®æãã
\begin{eqnarray} \require{cancel}
\sin^2 x+ \cos^2 x&=&\left(\frac{e^{ix}-e^{-ix}}{2i}\right)^2+\left(\frac{e^{ix}+e^{-ix}}{2}\right)^2\\
&=&\frac{e^{2ix}-2+e^{-2ix}}{-4}+\frac{e^{2ix}+2+e^{-2ix}}{4}\\
&=&\frac{\cancel{-e^{2ix}}+2-\xcancel{e^{-2ix}}}{4}+\frac{\cancel{e^{2ix}}+2+\xcancel{e^{-2ix}}}{4}\\
&=&1
\end{eqnarray}
åã£ã¦ããã
Â
Â
ã確ãããã
左辺ãå¤å½¢ãã¦å³è¾ºãç®æãã
\begin{eqnarray} \require{cancel}
( \sin x)'&=&\left( \frac{e^{ix}-e^{-ix}}{2i} \right)'\\
&=&\frac{i e^{ix}+i e^{-ix}}{2i}\\
&=&\frac{\cancel{i}e^{ix}+\cancel{i}e^{-ix}}{2\cancel{i}}\\
&=&\frac{e^{ix}+e^{-ix}}{2}\\
&=& \cos x
\end{eqnarray}
åã£ã¦ããã
Â
Â
ã確ãããã
左辺ãå¤å½¢ãã¦å³è¾ºãç®æãã
\begin{eqnarray}
( \cos x)'&=&\left( \frac{e^{ix}+e^{-ix}}{2} \right)'\\
&=&\frac{i e^{ix}-i e^{-ix}}{2}
\end{eqnarray}
ååã¨åæ¯ã«ããããã
\begin{eqnarray}
(\cos x)'&=&\frac{-e^{ix}+e^{-ix}}{2i}\\
&=&-\frac{e^{ix}-e^{-ix}}{2i}\\
&=& -\sin x
\end{eqnarray}
åã£ã¦ããã
Â
ã確ãããã
ä»åã¯å³è¾ºãå¤å½¢ãã¦å·¦è¾ºãç®æãã
\begin{eqnarray} \require{cancel}
2 \sin x \cos x&=&2 \cdot \frac{e^{ix}-e^{-ix}}{2i} \cdot \frac{e^{ix}+e^{-ix}}{2}\\
&=&2 \cdot \frac{e^{2ix}-e^{2ix}}{4i}\\
&=&\frac{e^{2ix}-e^{2ix}}{2i}\\
&=&\sin 2x
\end{eqnarray}
åã£ã¦ããã
Â
ã確ãããã
ä»åã¯å³è¾ºãå¤å½¢ãã¦å·¦è¾ºãç®æãã
\begin{eqnarray} \require{cancel}
\sin a\cos b+\cos a \sin b &=&\frac{e^{ia}-e^{-ia}}{2i} \cdot \frac{e^{ib}+e^{-ib}}{2}+\frac{e^{ia}+e^{-ia}}{2}Â \cdot \frac{e^{ib}-e^{-ib}}{2i}\\
&=&\frac{e^{i(a+b)}-\cancel{e^{i(b-a)}}+\xcancel{e^{i(a-b)}}-e^{-i(a+b)}}{4i}+\frac{e^{i(a+b)}-\xcancel{e^{i(a-b)}}+\cancel{e^{i(b-a)}}-e^{-i(a+b)}}{4i}\\
&=&\frac{2e^{i(a+b)}-2e^{-i(a+b)}}{4i}\\
&=&\frac{e^{i(a+b)}-e^{-i(a+b)}}{2i}\\
&=&\sin (a+b)
\end{eqnarray}
åã£ã¦ããã
Â
代表çãªä¸è§é¢æ°ã®æ§è³ªããææ°é¢æ°è¡¨è¨ã§ãæãç«ã£ã¦ãããã¨ã確ãããããã