Not your computer? Use a private browsing window to sign in. Learn more
Menu Menu Agda ã§è¨¼æããªããåè«ãå¦ã¶ã¨ããäºå®ã§ãããã¾ãå ¥éã§ã¯ãªãããã Higher-Order Categorical Logic ã® 0ç« ã«ç¸çããå 容ã§ãã BitBucket category-exercise-in-agda source code Agda ã®å ¥éã®è¦ç´ Agda ã®å ¥é Agda ã®éåã® Level Agda ã® record Agda ã®Reasoning Caategory module ã¨åã®å ¥é èªç¶å¤æ IdentityFunctor 㨠Hom Reasoning Monad ã®çµåå Sets 㨠Monoid ã使ã£ã Monad ã®ä¾ Kleisli åã®æ§æ ããã¾ã§ã Monad ãç解ããããã®é¨åã以ä¸ã¯ãAdjoint é¢é£ã§ãã Adjoint ãããMonad ãå°ã Kleisli åã«ãã Mona
This short introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. After a chapter introducing the basic definitions, separate chapters present three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties the
éä¼´ éä¼´ã¨ããã®ã¯2ã¤ã®é¢æã®é¢ä¿ã®ãã¨ã§ã. $ F : \mathcal{C} \to \mathcal{D} $, $ G : \mathcal{D} \to \mathcal{C} $ããã£ãã¨ã, éä¼´$F \dashv G$ ã¨ã¯, èªç¶åå $\hom(F\cdot,\cdot) \cong \hom(\cdot,G\cdot)$ ã®ãã¨ã§ã(ãã ããã®ååã¯homã®å·¦å³ãåæã«åºå®ãã¦, 2å¤æ°å¼æ°ã¨ãã¦ã¿ã¦èãã¾ã). æç« ã§èªãããå³å¼ãè¦ãã»ããæ©ãã§ã. ã³ã¼ãã«ããã®ãç°¡åã§ã. éä¼´ã¯åè«ã§ã¯éè¦ãªæ¦å¿µã§ã. ããã§Haskellã§ã®éä¼´ã«ã¤ãã¦è¦ã¦ããã¾ã. ä¾ (æ®å¿µãªãã¨ã«)Haskellã§ã®éä¼´ã®ä¾ã¯ããã¾ã§å¤ããªãã§ã. ã¨ããã®ã, Haskellã§ããè¦ãé¢æ(Maybe, List, Either aãªã©)ã«ã¯éä¼´ãåå¨ããªããã¨ãç°¡åã«ç¤ºãã
ï¼ï¼åã®å®ç¾© ä¸è¬çã«ãåã¯æ¬¡ã®ããã«å®ç¾©ããã¦ãããåã¯ï¼ã¤ã®è¦ç´ ã¨äºã¤ã®æ¡ä»¶ã«ããæ§æããããï¼ã¤ã®è¦ç´ ã¯æ¬¡ã®ããã«ãªã£ã¦ããã (1) 対象 åã¯å¯¾è±¡ãæããã対象ã¯ãé常ã¯å¤§æåãç¨ãã¦ã\(A,B,C,..\)ã¨è¡¨ãï¼å¯¾è±¡ã¯å¤ãã®å ´åä½ãã®éã¾ãã§ãããä¾ãã°ãéåãªã©ã対象ã«ãªããããããéåã®è¦ç´ ã¯ãã®å ´å対象ã¨ã¯ãããªãï¼ã (2) å° åã¯å¯¾è±¡ï¼è¤æ°ã®å ´åãå¯ï¼ãã対象ï¼ãã¡ããè¤æ°ã®å ´åå¯ï¼ã¸ç§»ãå°ãæãããå°ã¯ãé常å°æåãç¨ãã¦ã\(f,g,h,..\)ã¨è¡¨ãï¼ããã¾ã§ç¿ã£ã¦ããé¢æ°ã¯å°ã¨ãªãããå°ã¨ãªãã®ã¯é¢æ°ã ãã§ã¯ãªãããããã説æããã¢ãã¤ãã®å ´åã¯ããã¾ã§ã®é¢æ°ã¨ã¯ç°ãªãï¼ã (3) ãã¡ã¤ã³ã¨ã³ãã¡ã¤ã³ å°ã®åºçºï¼å ¥åï¼å´ã®å¯¾è±¡ããã¡ã¤ã³ã¨ãããå°çï¼åºåï¼å´ã®å¯¾è±¡ãã³ãã¡ã¤ã³ã¨ããã (4) æçå° å°ã¯æçå°\(id\)ãæãããæçå°ã¯èªåããèªå
æ±å¤§é§å ´ã«æ¥ã¦ã¾ãã®ã§ã¡ã¢ãåãã¾ãã åè«ã¨ã¯ åè«ã®ç¶ S.Mac Lane arrowã¨diagramã§æ°å¦çä½ç³»ã®å¤ãã®æ§è³ªã å¯æå³å¼ ä»æ¥ã®ãã¼ã: ä½ç¸å¹¾ä½å¦ã¨ããã°ã©ãã³ã° åè«ã®åºç¤ / æ¾æ£®è³å®ãã åãåãã¦ã®äººåã 代æ°çä½ç¸å¹¾ä½å¦ã®æèããçã¾ãã èªç¶å¤æã表ç¾ãããã£ã åã®å®ç¾© \(Ob(C)\), \(Hom_c(,)\), \(\circ\) \(f : X \to Y\) \(\circ : Hom_C(Y, Z) \times Hom_C(X, Y) \to Hom_C(X, Z)\) \(1_X \in Hom_C(X, X)\) identity, \((h \circ g) \circ f = h \circ (f \circ g)\) composition \(f: X \to Y\), \(X\) domain, \(Y\) codoma
æ æ å彦 æ°å¦ç§ è¬åº§ï¼å¹¾ä½å¦åé ç¥æ´ï¼ 1986 å¹´ä¿¡å·å¤§å¦çå¦é¨æ°å¦ç§åæ¥ 1988 å¹´ä¿¡å·å¤§å¦å¤§å¦é¢çå¦ç 究ç§ä¿®äº 1991 年京é½å¤§å¦å¤§å¦é¢çå¦ç 究ç§å士å¾æ課ç¨ä¿®äº(çå¦å士) 1991 年群馬工æ¥é«çå°éå¦æ ¡è¬å¸« 1995 年岡山çç§å¤§å¦çå¦é¨è¬å¸« 1999 年岡山çç§å¤§å¦çå¦é¨å©ææ 2004 å¹´ä¿¡å·å¤§å¦çå¦é¨å©ææ 2005 å¹´ä¿¡å·å¤§å¦çå¦é¨ææ ãã¼ã¯ã¼ãï¼ãããã¸ã¼ ãã¼ã ãã¼ã¸ï¼http://marine.shinshu-u.ac.jp/~kuri/home.html SOARãªã³ã¯ï¼SOARãè¦ã ç¾å¨ã®ç 究ãã¼ãï¼ç©ºéã®ä»£æ°ç模å éåã«è¿ããé ãããããã¯åºãããç¹ããã®æ¦å¿µãå®ç¾©ãããã®ããä½ç¸ç©ºéã(以ä¸ç©ºé) ã¨å¼ã°ããå¹¾ä½å¦çãªå¯¾è±¡ã§ãéåã«æ¼ç®ãå®ç¾©ãããã®ãã群ããç°ãã¨å¼ã°ãã代æ°çãªå¯¾è±¡ã§ããç§ã¯ç©ºéã代æ°çãªå¯¾è±¡ã§è¿ä¼¼ãããããç¨ãã¦å ã®ç©º
From Lenses to Yoneda Embedding Posted by Bartosz Milewski under Category Theory, Functional Programming, Haskell, Lens, Programming [6] Comments Lenses are a fascinating subject. Edward Kmettâs lens library is an indispensable tool in every Haskell programmerâs toolbox. I set out to write this blog post with the goal of describing some new insights into their categorical interpretation, but then
ããã¾ã§æ¸ãã¦é£½ãã¾ãã. 1ç« åã¨ãã®æ§é 1.1 åã®å®ç¾©ã¨åæ¯ã®è¬ç¾© ã4æããã®ã¼ãã¯ãã決ããï¼ã ããã. ã¨ãããã,ã¯ã©ã¹ã®åã¨ãã¢ãã¸ã¼ä»£æ°ã¼ãããããã¨æã£ã¦ãã. æ¥ä¼ã¿ã®ãã¡ã«äºç¿ãé²ããªãã¨ã ããµã ã,ãã¢ãã¸ã¼ä»£æ°ãã åæ¯ã¯èªãã§ããæ¬ããã¿ã³ã¨éãã¦, å¢ãè¯ãç«ã¡ä¸ãã£ãã¨æã£ãã大ãã伸ã³ããã¦, ã¤ãã¤ãã¨è¶³ãå¼ã£æããããã«ãã¦é»æ¿ã®åã¾ã§æ©ã, ãã®ãã¨ç«ã¡æ¢ã¾ã£ã¦ãããããã¨æ¯ãè¿ã£ã¦ãã¡ããè¦ã. ãhomologyã¯ããã. è¤éãªç©ºéããåç´ã ãã©éè¦ãªæ å ±ãæãåºãã. è¤éã«çµ¡ã¿åã£ã網ã®ä¸ã®, æ¬å½ã«å¤§åãªãã®ãæ¾ãä¸ããããã«ãã¦æ å ±ãå¾ããã. homologyã¯ã¨ã¦ãããããã ãåæ¯ã¯ãã¢ãã¸ã¼ä»£æ°ããã£ã¦ãã®ï¼ã ãå¿ è¦ãªæã«æ±ãã ãã. Abelian categoryã¯ãããªã«è©³ãããªããã ããã¼ã¹ããããã¦ããã¼
1. KSB:æ²³åç 究室çºè¡¨ä¼ (æ²³å康éå çéæ¦è¨å¿µ) 2005å¹´7æ29æ¥ åè«ã®ã¢ããã¨Haskellã®ã¢ãã ä¹å·å¤§å¦ 大å¦é¢æ°çå¦ç ç©¶é¢ æº å£ ä½³ å¯ 2. æ²³åå çã¨ã®åºä¼ã æå54å¹´(1979å¹´)4æ æºå£(大å¦1å¹´ç) æé¤é¨ã§ã®æ°å¦ç§å°éç§ç® ãæ å ±æ°å¦åºè«ããæ å½ããã¦ããï¼ (åè¬ããï¼ï¼) æå57å¹´4æ æ°å¦è¬ç©¶(大å¦4å¹´ç) åè«ã®æ å ±ç§å¦ã¸ã®å¿ç¨ã«æ¹ãããï¼ (ã¼ãçã¯ï¼åã ã£ãï¼ï¼) 3. LAã·ã³ãã¸ã¦ã ä¼å ±No.7 (1986å¹´7æ) (è¬åº§ç´¹ä») ä¹å·å¤§å¦çå¦é¨æ°å¦æ室 æ°ç解æå¦è¬åº§ æ²³ãåã康ãé (ä¸é¨ç¥) ç§ãæå±ããã®ã¯, ä¹å·å¤§å¦ã»çå¦é¨ã»æ°å¦æ室ã»æ°ç解æå¦è¬åº§ã§, å代è¬åº§ æ å½ææã¯å·¥è¤éäºå çï¼æå56å¹´2æï½æå58å¹´3æ, ç¾å¨ä¹ ç米工æ¥å¤§å¦ ææï¼ã§ããã, æ¨å¹´4æããã¯å¤§éªå¤§å¦ããèµ´ä»»ãããç°ä¸ä¿ä¸ææãè¬åº§ãæ å½ã
ãããã¯ã¼ã¯ã®è¨æ¸¬ã¨è§£æ ã¤ã³ã¿ã¼ãããã®ä½¿ããæ¹ããããã¯ã¼ã¯ã®æåãææ¡ããäºã¯ããããã¯ã¼ã¯ãéç¨ãããã®æè¡éçºãè¡ã ããã«æ¬ ããã¾ããããããã観測ã§å¾ããããã¼ã¿éã¯è¨å¤§ã§ãããã¤ãºãå¤ããã¾ãã観測ã§ããã®ã¯æ¥µãã¦éãããé¨åã§ããããã¾ãããããã§ãè¨å¤§ãªãã¼ã¿ããæå³ã®ããæ å ±ãæ½åºããããé¨åçãªè¦³æ¸¬ããããä¸è¬çãªå¾åãæ¨æ¸¬ããäºãå¿ è¦ã¨ãªãã¾ãã... ã¤ã³ã¿ã¼ãããåºç¤æè¡ éãã¦ãå®å ¨ã§ãä¿¡é ¼æ§ãé«ãã使ããããããªã©ãã¤ã³ã¿ã¼ããããµã¼ãã¹ã¸ã®è¦æ±ã¯ã¾ãã¾ãé«ã¾ã£ã¦ãã¾ãããããã®è¦æ±ã«å¿ããããã«ãã¤ã³ã¿ã¼ãããã® åºç¤æè¡ãæ¥ã é²æ©ãã¦ãã¾ãããã¾ãã¤ã³ã¿ã¼ãããã¯ã¤ãªããã ãã®ãµã¼ãã¹ã§ã¯ãªããé«åº¦ã§è¤éãªæ©è½ãåãã社ä¼åºç¤ã¨ãªãã¾ãããIIJæè¡ç 究æã¯ãã¤ã³ã¿ã¼ãããã®åºç¤ã¨ãã¦å®ç¾ãæå¾ ãããæ©è½ãæä¾ããããã«ããã¾ãã¾ãªæè¡èª²é¡ã«åãçµãã§
ãããã¯ã¼ã¯ã®è¨æ¸¬ã¨è§£æ ã¤ã³ã¿ã¼ãããã®ä½¿ããæ¹ããããã¯ã¼ã¯ã®æåãææ¡ããäºã¯ããããã¯ã¼ã¯ãéç¨ãããã®æè¡éçºãè¡ã ããã«æ¬ ããã¾ããããããã観測ã§å¾ããããã¼ã¿éã¯è¨å¤§ã§ãããã¤ãºãå¤ããã¾ãã観測ã§ããã®ã¯æ¥µãã¦éãããé¨åã§ããããã¾ãããããã§ãè¨å¤§ãªãã¼ã¿ããæå³ã®ããæ å ±ãæ½åºããããé¨åçãªè¦³æ¸¬ããããä¸è¬çãªå¾åãæ¨æ¸¬ããäºãå¿ è¦ã¨ãªãã¾ãã... ã¤ã³ã¿ã¼ãããåºç¤æè¡ éãã¦ãå®å ¨ã§ãä¿¡é ¼æ§ãé«ãã使ããããããªã©ãã¤ã³ã¿ã¼ããããµã¼ãã¹ã¸ã®è¦æ±ã¯ã¾ãã¾ãé«ã¾ã£ã¦ãã¾ãããããã®è¦æ±ã«å¿ããããã«ãã¤ã³ã¿ã¼ãããã® åºç¤æè¡ãæ¥ã é²æ©ãã¦ãã¾ãããã¾ãã¤ã³ã¿ã¼ãããã¯ã¤ãªããã ãã®ãµã¼ãã¹ã§ã¯ãªããé«åº¦ã§è¤éãªæ©è½ãåãã社ä¼åºç¤ã¨ãªãã¾ãããIIJæè¡ç 究æã¯ãã¤ã³ã¿ã¼ãããã®åºç¤ã¨ãã¦å®ç¾ãæå¾ ãããæ©è½ãæä¾ããããã«ããã¾ãã¾ãªæè¡èª²é¡ã«åãçµãã§
Wed, Apr 30, 2014 I hope most mathematicians continue to fear and despise category theory, so I can continue to maintain a certain advantage over them. âJohn Baez The above is a graph of the number of times the phrase âcategory theoryâ has been used in books, from about 1950 through the present. It speaks for itself. But why? Whatâs the big deal? Why does category theory matter? Iâm about a quarte
For a student embarking on a study of algebraic topology, requiring a knowledge of basic category theory, with a long-term view toward higher/stable/derived category theory, ... Is Mac Lane still the best place to start? Or has the day arrived when it is possible to directly learn ($\infty$,n)-categories, without first learning ordinary category theory? (So the next generation will be, so to speak
åè«ã®æç§æ¸ã¨ãã¦ãä¸ã¤ã®å®çªã¨å¼ã°ããæ¬ãMacLaneã®Categories for the Working Mathematicianï¼é¦è¨³ï¼åè«ã®åºç¤ï¼ã ããã®æ¬ã¯èªåèªèº«ã«ã¨ã£ã¦ã大å¦ã«å ¥ã£ã¦ããæåã«èªã¿ãµãããèªã¿åã£ãæ¬ã¨ãã¦ã¨ã¦ã親ãã¿æ·±ãæ¬ã§ãããããããå æ¥ä¹ ãã¶ãã«æã«åã£ã¦çºããªããã¦ã¿ãã¨ãå°ãç©è¶³ããªãã¨æããã¨ãããè¯ããªãã¨æããã¨ãããå¤ããããããã§ãåè«ã®åºç¤ï¼ä»¥ä¸CWMï¼ãã«ã¤ãã¦ä»ã®ç«å ´ããæãæãã¬ãã¥ã¼ãã¦ã¿ããã¨æãã âMacLaneã®ã¹ã¿ã¤ã« ã¾ããCWMã«éããMacLaneã®æ¸ãæ¬ï¼ä¾ãã°Homologyï¼ã¯ç¹å¾´ããããããã¯ãå ·ä½ããæ½è±¡ã¸ãã¨ããæµããæ確ã«æèãã¦ããç¹ã ãä¾ãã°ãéä¼´é¢æã®èª¬æãããã¨ãããããã¨ãä¸è¬çãªè©±ãããåã«èªç±ãã¯ãã«ç©ºéã¨å¿å´é¢æã®è©±ããããèªç±ã°ã©ãã®è©±ãããããããã®æ§é ãæèããªãããå ±é
Decrease quantity for Halobet ð Situs Slot Online Terpercaya Gacor 2024 Increase quantity for Halobet ð Situs Slot Online Terpercaya Gacor 2024 Fasilitas Lengkap untuk Pemain Baru Bagi para pemain baru, Halobet menyediakan fasilitas lengkap untuk memastikan Anda merasa nyaman dan terhibur selama bermain di situs kami. Dari berbagai pilihan permainan slot hingga layanan pelanggan yang responsif,
2013å¹´æåç¥ ç¬¬67åçæ ¡æåç¥ã¯ã 2013å¹´5æ2æ¥(æ¨) ã 5æ3æ¥(éã»ç¥) ã®ä¸¡æ¥éå¬ã§ãã ä»å¹´ãçæ ¡ãã½ã³ã³ç 究é¨ã®å±ç¤ºã«ãã²ãè¶ããã ããã é¨èª 2013å¹´é¨èªãã¼ã¸æ°:315 ãµã¤ãº:29.0MB ç®æ¬¡ æ¨ã®ã¯ãªã(PDF) ãã¯ãã®ãã¯ãªã(PDF) 競æããã°ã©ãã³ã°ã¨åçæ´æ°è«å ¥é(PDF) DNSãã¤ã¾ãã³ã°(PDF) Java Zero-Day(PDF) é£èªãã©ã³ã(PDF) 符å·çè«ã«ã¤ãã¦(PDF) Unity3Dãå®ç¨ãã(PDF) ã±ãããã®ãªããã®ããã¦ã¿ãã(PDF) åè«ã«ããããã°ã©ãã³ã°ã¨è«ç(PDF) ãã¦ã³ãã¼ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}