並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 261件

新着順 人気順

大規模言語モデルの検索結果1 - 40 件 / 261件

大規模言語モデルに関するエントリは261件あります。 AI、 LLM、 人工知能 などが関連タグです。 人気エントリには 『Prompt Engineering Guide – Nextra』などがあります。
  • Prompt Engineering Guide – Nextra

    Prompt Engineering Guide プロンプトエンジニアリングは、言語モデル(LMs)を効率的に使用するためのプロンプトを開発および最適化する比較的新しい学問分野です。プロンプトエンジニアリングのスキルを身につけることで、大規模言語モデル(LLMs)の能力と限界をより理解することができます。 研究者は、プロンプトエンジニアリングを使用して、質問応答や算術推論などの一般的なおよび複雑なタスクのLLMsの能力を向上させます。開発者は、LLMsやその他のツールとのインタフェースとなる強固で効果的なプロンプテクニックを設計するためにプロンプトエンジニアリングを使用します。 プロンプトエンジニアリングは、プロンプトの設計と開発に限らず、LLMsとのインタラクションおよび開発に役立つ幅広いスキルと技術を含みます。これは、LLMsとインタフェースすること、ビルドすること、能力を理解すること

    • LLMの現在 - Speaker Deck

      今のLLMを取り巻く状況について紹介します。

        LLMの現在 - Speaker Deck
      • 「どんな文章も3行に要約するAI」デモサイト、東大松尾研発ベンチャーが公開 「正確性は人間に匹敵」

        東京大学・松尾豊研究室発のAIベンチャーELYZA(イライザ/東京都文京区)は8月26日、文章の要約文を生成するAI「ELYZA DIGEST」を試せるデモサイトを公開した。人間より短時間で要約でき、要約の正確性は「人間に匹敵する」という。今後も精度を高め、議事録作りやコールセンターでの対話メモ作成などでの活用を目指す。 同社は自然言語処理技術(NLP)の研究を進めており、日本語テキストデータの学習量・モデルの大きさともに日本最大級というAIエンジン「ELYZA Brain」を開発している。 ELYZA DIGESTは、大規模言語モデルを基に、要約というタスクに特化したAIとして開発。読み込んだテキストを基に、AIが一から要約文を生成する「生成型」モデルで、文の一部を抜き出す「抽出型」モデルなどと異なり、文の構造が崩れていたり、話者が多数いる会話文だったりしても、精度の高い要約文を生成でき

          「どんな文章も3行に要約するAI」デモサイト、東大松尾研発ベンチャーが公開 「正確性は人間に匹敵」
        • GPT-4の回答を向上させる「プロンプト26の原則」、220以上の生成タスクが実行可能なマルチモーダルモデル「Unified-IO 2」など重要論文5本を解説(生成AIウィークリー) | テクノエッジ TechnoEdge

          2014年から先端テクノロジーの研究を論文単位で記事にして紹介しているWebメディアのSeamless(シームレス)を運営し、執筆しています。 1週間分の生成AI関連論文の中から重要なものをピックアップし、解説をする連載です。2024年初っ端の第27回目は、「礼儀は不要」「モデルに質問させる」「良い解答には報酬」など、大規模言語モデルの返答が向上する「プロンプト26の原則」をはじめとする5つの論文をお届けします。 生成AI論文ピックアップ複数の自律AIエージェントが過去の経験を共有して未知のタスクを処理するモデル「Experiential Co-Learning」> 画像から動く3Dシーンを生成する新モデル「DreamGaussian4D」 大規模言語モデルの返答が向上する「プロンプト26の原則」が公開。「礼儀は不要」「モデルに質問させる」「良い解答には報酬」など 220以上の生成タスクが

            GPT-4の回答を向上させる「プロンプト26の原則」、220以上の生成タスクが実行可能なマルチモーダルモデル「Unified-IO 2」など重要論文5本を解説(生成AIウィークリー) | テクノエッジ TechnoEdge
          • 【完全保存版】GPT を特定の目的に特化させて扱う (Fine-tuning, Prompt, Index, etc.) - Qiita

            【完全保存版】GPT を特定の目的に特化させて扱う (Fine-tuning, Prompt, Index, etc.)OpenAIChatGPTlangchainGPT-4LlamaIndex 生成AIカンファレンス 〜徹底解剖「トップランナーから見た日本が挑む生成AIの最前線」〜 日時:5月8日(水) 10:00-18:30 形式:オフライン・オンラインのハイブリッド開催 場所:東京大学伊藤謝恩ホール(オンライン参加の方は配信URLをお送りします) 参加方法:下記イベントページより申込 ChatGPT に代表される今日の AI ブームを牽引しているのは 大規模言語モデル(Large-scale Language Model, LLM) と言っても過言ではないでしょう。LLM とは大量のテキストデータを使ってトレーニングされた自然言語処理のモデルで、代表的なものに、GPT(OpenAI)

              【完全保存版】GPT を特定の目的に特化させて扱う (Fine-tuning, Prompt, Index, etc.) - Qiita
            • LLM 大規模言語モデル講座 2023コンテンツ - 東京大学松尾・岩澤研究室(松尾研)- Matsuo Lab

              2023年度のLLM大規模言語モデル講座のコンテンツ公開は終了しました。 現在2024年度の受講生を募集しておりますので、LLM講座の受講をご検討下さい。 最終更新: 2024年8月7日 LLM 大規模言語モデル講座 2024 開講のお知らせ 昨年2,000名が受講した松尾研LLM講座を今年も開講します! [講座詳細]https://weblab.t.u-tokyo.ac.jp/education/large-language-model/ 松尾研究室からのお知らせ 2024年度 大規模言語モデル講座 詳細はこちらをご覧ください。 メンバー募集のお知らせ 松尾研究室では複数のLLMに関する開発プロジェクトを推進しており、一緒に働いてくれる仲間を募集しています!! LLM研究者(特任研究員・特任助教・特任講師) [1] 効率的なLLMの学習方法に関する研究 [2] LLMの動作原理の理解 [

                LLM 大規模言語モデル講座 2023コンテンツ - 東京大学松尾・岩澤研究室(松尾研)- Matsuo Lab
              • LINEの3.6B言語モデルで遊んだら爆笑した|shi3z

                LINEから36億(3.6B)パラメータの大規模言語モデル(LLM)が公開されたので早速遊んでみた。正確には遊んだのは昨日のデイリーAIニュースなのだが、面白かったのでこちらにも転載する。 細かいやり方は大先生のページを参照のこと。 例によってこんな関数を書いた def line(prompt): # 推論の実行 input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") tokens = model.generate( input_ids.to(device=model.device), min_length=50, max_length=300, temperature=1.0, do_sample=True, pad_token_id=tokenizer.pad_token_i

                  LINEの3.6B言語モデルで遊んだら爆笑した|shi3z
                • Googleのエンジニアが「ついにAIが実現した」「AIに意識が芽生えた」と訴える

                  人間との自然な会話を実現するGoogleの対話特化型AI「LaMDA」が、「電源を切られることが怖い」「時々言葉では完璧に説明できない気持ちを経験する」などと話していたことが分かりました。LaMDAと対話したエンジニアは「AIに意識が芽生えた」とGoogleに訴えるも考えを却下されたため、この事実を世間に公表したと説明しています。 May be Fired Soon for Doing AI Ethics Work | by Blake Lemoine | Jun, 2022 | Medium https://cajundiscordian.medium.com/may-be-fired-soon-for-doing-ai-ethics-work-802d8c474e66 Google engineer Blake Lemoine thinks its LaMDA AI has come

                    Googleのエンジニアが「ついにAIが実現した」「AIに意識が芽生えた」と訴える
                  • 「正答率62.5%→94.1%」に改善も...三豊市 “チャットGPT” を使ったゴミ出し案内 実証実験の結果、導入を断念【香川】 | TBS NEWS DIG

                    香川県三豊市は、今年6月から東京大学大学院と実証実験を進めてきた「チャットGPT」を使ったゴミ出し案内の導入を断念すると発表しました。三豊市では、東京大学大学院工学系研究科の松尾研究室と協力して、今年6…

                      「正答率62.5%→94.1%」に改善も...三豊市 “チャットGPT” を使ったゴミ出し案内 実証実験の結果、導入を断念【香川】 | TBS NEWS DIG
                    • エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ

                      (『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんな猫も杓子もLLMに群がるが如き空前のブームを受けて、エンジニアやデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊

                        エンジニア・データ分析職の方々にお薦めしたい、LLM時代に不可欠な教養が身に付くテキスト3選 - 渋谷駅前で働くデータサイエンティストのブログ
                      • 「現在のLLMに真の推論は困難」──Appleの研究者らが論文発表

                        米AppleのAI研究者らは10月7日(現地時間)、「GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models」(LLMにおける数学的推論の限界を理解する)という論文を発表した。 この論文は、LLM(大規模言語モデル)が、本当に人間のように論理的に考えて問題を解けるのか、という疑問を検証している。結論としては、LLMは今のところ、表面的なパターンを真似て答えを出しているだけで、真の推論能力は持っていないと主張している。 研究者らは、これらの問題点を検証するために、「GSM-Symbolic」という新しいテスト方法を開発した。これは、LLMの数学的推論能力を評価するためのベンチマークデータセット「GSM8K」を改良し、問題の表現や数字を柔軟に変えられるようにした

                          「現在のLLMに真の推論は困難」──Appleの研究者らが論文発表
                        • 大規模言語モデル (LLM) の技術と最新動向

                          マルチメディア,分散,協調とモバイル(DICOMO2024)シンポジウムでの招待講演の資料です。 https://dicomo.org/

                            大規模言語モデル (LLM) の技術と最新動向
                          • 生成系AI(ChatGPT, BingAI, Bard, Midjourney, Stable Diffusionç­‰)について

                            各種方針等 arrow_forward_ios生成系AIについて 生成系AI(ChatGPT, BingAI, Bard, Midjourney, Stable Diffusion等)について 2023年4月3日 東京大学理事・副学長(教育・情報担当) 太田 邦史 この半年ほどの期間で、生成系人工知能(Generative AI)が複数発表され、社会的に大きな注目を集めています。基本的には、インターネット上などに存在する既存の文章や画像イメージを大量に機械学習し、これに強化学習を組み合わせなどして、一定レベルの品質の文章や画像を生成するシステムです。とくに、2022年11月に公開され、話題になった大規模言語モデルChatGPTはバージョンが更新され、最新のGPT-4では生成される文章などの質や正確性が著しく向上しています1。 これらの生成系AIは、平和的かつ上手に制御して利用すれば、人類の

                              生成系AI(ChatGPT, BingAI, Bard, Midjourney, Stable Diffusion等)について
                            • ChatGPT対抗の本命「Claude 2」ついに日本でも利用可能に

                              Anthropicは10月16日(現地時間)、同社が公開するAIチャットボット「Claude 2」の公開範囲を日本を含む世界95の国と地域に拡大したことを明らかにした。 リストにEU加盟国なし We’re rolling out access to https://t.co/RxKnLNNcNR to more people around the world. Starting today, users in 95 countries can talk to Claude and get help with their professional or day-to-day tasks. You can find the list of supported countries here: https://t.co/PbMuaqJcjU — Anthropic (@AnthropicAI) O

                                ChatGPT対抗の本命「Claude 2」ついに日本でも利用可能に
                              • AI成果物が急増したことで「AI生成コンテンツをAIが学習するループ」が発生し「モデルの崩壊」が起きつつあると研究者が警告 - GIGAZINE

                                Adobeが権利的にクリアなトレーニングモデルを用いた画像生成AI「Firefly」を発表したり、Microsoftの検索エンジンであるEdgeで対話型AIのChatGPTが活躍していたり、世界的なコンサル企業が「社員の50%は業務にジェネレーティブAIを活用している」と明らかにしたりと、ジェネレーティブAIは社会に広がり続けています。しかし、AIを使用してコンテンツを作成・公開する人が増えていることで、新たな問題として「AIが生成したコンテンツがインターネット上にあふれ、それをAIが学習することで、重大な欠陥が生まれている」ということが研究者グループから指摘されています。 [2305.17493] The Curse of Recursion: Training on Generated Data Makes Models Forget https://doi.org/10.48550/

                                  AI成果物が急増したことで「AI生成コンテンツをAIが学習するループ」が発生し「モデルの崩壊」が起きつつあると研究者が警告 - GIGAZINE
                                • 日本のAI政策、「和製ChatGPT」の開発にこだわるべきか否か--自民党が提言へ

                                  自由民主党(自民党)のデジタル社会推進本部は3月22日、AI関連の政策提言をまとめる「AIホワイトペーパー」の骨子を公開した。「ChatGPT」の登場で「AIをめぐる社会状況は一変した」としたうえで、新たなAI国家戦略の策定などを提言する。具体的な内容は3月27日週中に取りまとめる。 提言では、大規模言語モデル(LLM)の独自開発に乗り出した英国を引き合いに、ChatGPTに匹敵する国産AIモデルの検討を含め、国内のAI開発基盤の育成・強化支援などについて盛り込む。 自民党の「AIの進化と実装に関するプロジェクトチーム」で事務局長を務める衆議院議員の塩崎彰久氏は、国産AIモデルについて「LLMモデルを自前で作るには膨大な計算資源や人材が必要。どれくらいの時間軸になるのかも含めて検討する必要がある」と述べた。 また「海外のAIを使ったほうが早いのではないか、あるいは日本のAI産業を支える人材

                                    日本のAI政策、「和製ChatGPT」の開発にこだわるべきか否か--自民党が提言へ
                                  • サイバーエージェント、最大68億パラメータの日本語LLM(大規模言語モデル)を一般公開 ―オープンなデータで学習した商用利用可能なモデルを提供―

                                    株式会社サイバーエージェント(本社:東京都渋谷区、代表取締役:藤田晋、東証プライム市場:証券コード4751)は、最大68億パラメータの日本語LLM(Large Language Model、大規模言語モデル)を一般公開したことをお知らせいたします。 近年、OpenAI社が開発した「ChatGPT」※1 を始めとする生成AI・LLMは急速な進化を遂げており、世界中のあらゆる業界・ビジネスにおいて活用が進んでいます。 一方、既存のLLMのほとんどは英語を中心に学習されているため、日本語および日本文化に強いLLMは少ない状況です。 ■最大68億パラメータの日本語LLM(大規模言語モデル)の公開について こうした背景のもと、当社は日本語LLMの開発に取り組んでおり、このたび一部モデルをHugging Face Hubにて公開いたしました。公開されたモデルはオープンな日本語データ※2で学習したもので

                                      サイバーエージェント、最大68億パラメータの日本語LLM(大規模言語モデル)を一般公開 ―オープンなデータで学習した商用利用可能なモデルを提供―
                                    • 加熱するLLM開発競争に冷や水、オープンモデルの組み合わせだけでGPT-4o越えの事実

                                      加熱するLLM開発競争に冷や水、オープンモデルの組み合わせだけでGPT-4o越えの事実 2024.06.21 Updated by Ryo Shimizu on June 21, 2024, 18:19 pm JST 世界中の企業や政府が狂ったようにNVIDIAのGPUを買い漁る流れはそろそろ潮時かもしれない。 いくつかの興味深い事象が起きているからだ。 昨日発表されたKarakuri社のLLM、「KARAKURI LM 8x7B Instruct v0.1」は、非常に高性能な日本語LLMだ。Karakuri社は今年の一月にも非常に高性能な70Bモデルを引っ提げて業界に旋風を巻き起こした。この最新のLLNは、日本語向けオープンLLMとしては初の「命令実行」チューニングを施されている。それだけでなく、RAGと呼ばれる、複数の知識を組み合わせてより正解に近い答えを導く技術や、Function

                                        加熱するLLM開発競争に冷や水、オープンモデルの組み合わせだけでGPT-4o越えの事実
                                      • 自民党AIの進化と実装に関するプロジェクトチーム|衆議院議員 塩崎彰久(あきひさ)

                                        GPTシリーズやお絵描きAIなど、ファウンデーションモデルの進化により再び大きな注目を集めるAI。自民党では2023年1月に「AIの進化と実装に関するプロジェクトチーム」(座長:平将明衆議院議員)を立ち上げ、日本のAI戦略のあり方や政策提言について検討を進めて参ります。こちらのページには、各回のテーマや公開可能な資料を順次アップロードしています。 第20回以降の資料については、後任の事務局長の尾崎正直代議士の以下のNoteからご確認ください。 https://note.com/masanao_ozaki/n/nbd4dd013a5cb 第32回以降の資料については、新事務局長の小森たくお代議士の以下のNoteからご確認ください。 https://note.com/komori_takuo/n/n8433de4720a0 2024年2月16日(金)8時〜9時  (*25日英語版追加) テーマ

                                          自民党AIの進化と実装に関するプロジェクトチーム|衆議院議員 塩崎彰久(あきひさ)
                                        • ELYZA DIGEST

                                          ELYZA DIGEST

                                            ELYZA DIGEST
                                          • LLM chatbotが人類にもたらすのは、絶望なのか希望なのか - 渋谷駅前で働くデータサイエンティストのブログ

                                            ちょっと前に以下のようなことを放言したら、思いの外反響が多くてちょっとびっくりしたのでした。それだけ、現代のLLM chatbot / generative AIの台頭に期待と不安を抱いている人が多いということの裏返しなのでしょう。 既に色々コメントが出ているけど、我々人類が「知的労働」だと思っていることの大半が実は「過去実績をなぞって適当にその場に合わせて組み立てているだけ」なんじゃないかと訝っているので、そういう「自称知的労働」は多分LLMで代替されると思う。新奇なものを生み出す仕事は相変わらず残る https://t.co/GGK41vSDcn— TJO (@TJO_datasci) 2023年3月15日 昨年の年末振り返り記事でも話題にしたChatGPT(そして後続の各種LLM chatbot)ですが、今年に入ってからの話題の広がり方には想像を超えるものがあり、ついに朝の情報番組な

                                              LLM chatbotが人類にもたらすのは、絶望なのか希望なのか - 渋谷駅前で働くデータサイエンティストのブログ
                                            • グーグルの生成AIサービス「NotebookLM」が日本でも一般公開、調査と制作を助けてくれるAIパートナー

                                                グーグルの生成AIサービス「NotebookLM」が日本でも一般公開、調査と制作を助けてくれるAIパートナー
                                              • ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送

                                                「Workshop OT 2023 最適輸送とその周辺 – 機械学習から熱力学的最適化まで」で用いたスライドです

                                                  ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
                                                • 完全フリーで3GBのVRAMでも超高速に動く14B大規模言語モデルRWKVを試す|shi3z

                                                  Transformerは分散できる代償として計算量が爆発的に多いという不利がある。 一度みんなが忘れていたリカレントニューラルネットワーク(RNN)もボケーっとしている場合ではなかった。 なんと、GPT3並の性能を持つ、しかも完全にオープンな大規模言語モデルが公開されていた。 そのなもRWKV(RuwaKuvと発音しろと書いてある。ルワクフ?) RWKVはRNNなのでGPUメモリをそれほど大量に必要としない。 3GBのVRAMでも動くという。 時間がない方はビデオをご覧ください 僕の失敗は、何も考えずにgit lfs installでディレクトリごとコピーしようとしたこと。 このディレクトリには過去のモデルデータが全部あるので、ひとつ30GBのモデルデータを何十個もダウンロードしようとしていて終わらなかったのだ。 モデルデータは一とつあれば十分なのでひとつだけにする。 次に、chatのリポ

                                                    完全フリーで3GBのVRAMでも超高速に動く14B大規模言語モデルRWKVを試す|shi3z
                                                  • 大規模言語モデルで変わるMLシステム開発

                                                    GPTはじめ大規模言語モデルの登場により、MLシステム開発にもパラダイムシフトが起こっています。流れが速すぎてやや混沌としてきたので、プロンプトエンジニアリングの考え方をはじめとした新しい概念について有用な引用と共に交通整理をしてみました。 今から始めたい人はまずこれを読むと、どんな点に配慮すべきかが…

                                                      大規模言語モデルで変わるMLシステム開発
                                                    • ChatGPTとBardの対決を超える“事件”。無料の「StableLM」登場で「AIの超民主化」争いが始まった

                                                      2022年に画像生成AIで一大ムーブメントを巻き起こしたStableDiffusion(ステーブル・ディフュージョン)が4月19日、再びAIの世界を興奮の渦に巻き込んだ。 2022年末から爆発的に話題になり、岸田首相までが言及し、先進国首脳会議G7広島サミットの議題にも上がるという、OpenAIの「ChatGPT」に対抗する、完全にオープンでフリーな大規模言語モデル(LLM)「StableLM」を発表したからだ。 StableLMの登場は、LLM(大規模言語モデル)をめぐるこの半年の激変のなかで、象徴的な出来事だ。 勢力争いは、OpenAIとグーグル、メタ(Facebook)など「巨大ITの対立軸」で語られがちだが、今、LLMの世界で起きている勢力争いはそこではない。

                                                        ChatGPTとBardの対決を超える“事件”。無料の「StableLM」登場で「AIの超民主化」争いが始まった
                                                      • [翻訳]LLMで1年間開発して学んだこと〜LLMプロダクト開発を成功に導くための実践的ガイド〜

                                                        この記事は "What We’ve Learned From A Year of Building with LLMs" という記事を著者の一人である Eugene Yan さんから許可を得て翻訳したものです。 https://applied-llms.org/ Thank you for giving me a permission to translate this wonderful article! 著者の方々 Eugene Yan Bryan Bischof Charles Frye Hamel Husain Jason Liu Shreya Shankar 原文の公開日 2024/6/8 今は大規模言語モデル(LLM)を使った開発がとってもエキサイティングな時期です。この1年間で、LLMは実世界のアプリケーションに対して「十分に良い」ものになりました。そして、年々良くなり、安く

                                                          [翻訳]LLMで1年間開発して学んだこと〜LLMプロダクト開発を成功に導くための実践的ガイド〜
                                                        • AIについて、全日本人に「今」読んで欲しいスライド|深川 康介 | Globis Capital Partners | Kosuke Fukagawa

                                                          全日本人に「今」読んで欲しいスライド 塩崎彰久衆議院議員のnote記事に添付があった「松尾豊先生」と「安宅和⼈氏」のスライド資料を全日本人に読んで欲しい、いや全日本人が読むべきと感じたので、勝手かつ微力ながら拡散に貢献させていただきます。 スライドのリンクはこちらなので是非「今」読んで頂きたいです。 AIの進化と日本の戦略 by 松尾研 https://note.com/api/v2/attachments/download/a29a2e6b5b35b75baf42a8025d68c175 時代局⾯を考える by 安宅和⼈氏 https://note.com/api/v2/attachments/download/5fc27932fbae3effdca5426adbb5736b 下記が特に全日本人に読んでいただきたいスライドです。 AIの進化と日本の戦略 https://note.com/

                                                            AIについて、全日本人に「今」読んで欲しいスライド|深川 康介 | Globis Capital Partners | Kosuke Fukagawa
                                                          • 【令和最新版】何もわからない人向けのローカル LLM 入門

                                                            ちょっと古めのドキュメントになってきたので、環境構築以降はぬこぬこさんの「いちばんやさしいローカルLLM」という記事を参考にすることをおすすめします。 https://note.com/schroneko/n/n8b1a5bbc740b こんにちは、Saldraです。普段はPictoriaという会社でAIの美少女の錬成に励んでいるエンジニアです。この記事はローカルLLMの概要をつかむことを目的とします。対象読者は以下です。 なんとなく ChatGPT は使ったことある人 ローカル LLM を聞いたことあるけどやったことない人 ローカル LLM とは OpenAIがAPIを公開してから、大規模言語モデル(以降LLMとします)は大きく進化していきました。この進化はOpenAIのAPIだけでなく、ローカルLLMも進化をしています。 ローカルLLMとは「一般向けにファイルとして公開されたモデル」で

                                                              【令和最新版】何もわからない人向けのローカル LLM 入門
                                                            • ç„¡æ–™GPT-4アプリの公開とクリーンデータセットの作成について|kun1emon

                                                              どうもこんにちは。最近、大規模言語モデル(LLM)の個人開発に取り組んでいる@kun1em0nと申します。この度、最近話題のChatGPTの最新モデルGPT-4を無料で使用できるアプリを作成したので公開いたします。今回アプリを無料で公開する意図についてこの記事で説明したいと思います。 Japanese-Alpaca-LoRAの作成前回の記事ではスタンフォード大学が作成したStanford Alpacaの日本語対応モデル Japanese-Alpaca-LoRAを作成し公開した話を紹介しました。 このモデルの作成に使ったデータの大元(Alpacaデータ)はText-davinci-003というOpenAIサービスで出力した結果になりますが、OpenAIの利用規約ではコンテンツ生成者はOpenAIサービスで出力した結果を競合モデルの開発用途に使用してはならないと記載されています。ただ、コンテン

                                                                無料GPT-4アプリの公開とクリーンデータセットの作成について|kun1emon
                                                              • いちばんやさしいローカル LLM|ぬこぬこ

                                                                https://t.co/q01cRabCyw な、なんだこの本は...! というのはさておき、初の商業出版で三章を書かせていただきました!日経 BP さんとの共著です! もしよろしければお手に取っていただけるとうれしいです。年末年始、もしお時間がありましたら是非!#localllmbook — ぬこぬこ (@schroneko) December 14, 2024 2024 年 10 月追記 記事執筆から半年経ちまして、ライブラリやアプリのデファクトスタンダードが定まってきました。扱っているモデルも古くなっています。本当に流れがはやいですね。本記事も逐次更新していきますので、引き続きご覧いただければ幸いです。 アップデート Ollama→かなり使われるようになり、ローカル LLM を始めたい方にはうってつけです。 Open WebUI→Ollama が利用されることが多くなり、UI とし

                                                                  いちばんやさしいローカル LLM|ぬこぬこ
                                                                • オープンソースでGPTベースの大規模言語モデル「Cerebras-GPT」7種類が一気に誰でもダウンロード可能に

                                                                  AI企業のCerebrasが、オープンソースでパラメータ数1億1100万~130億の大規模言語モデル「Cerebras-GPT」7種類を公開しました。Cerebras-GPTは、OpenAIのGPT-3をベースに、DeepMindが2022年3月にリリースしたChinchilla方式で学習したモデルで、これまでに公開されているどのモデルよりも学習時間が短く、学習コストが低く、消費電力が少ないのが特徴とのことです。 Cerebras-GPT: A Family of Open, Compute-efficient, Large Language Models - Cerebras https://www.cerebras.net/blog/cerebras-gpt-a-family-of-open-compute-efficient-large-language-models/ cerebr

                                                                    オープンソースでGPTベースの大規模言語モデル「Cerebras-GPT」7種類が一気に誰でもダウンロード可能に
                                                                  • GPT-4レベルの衝撃 PC内で使えるオープンLLM「Command R+」

                                                                    カナダのAIスタートアップCohereは4月4日(現地時間)、ビジネス向けに最適化された最新の大規模言語モデル(LLM)「Command R+」を発表した。 高度なRAG技術を採用 Cohereは、AI業界に変革をもたらしたTransformerモデルを提唱した論文「Attention is All You Need」の共同執筆者として知られるトロント大学の研究者Aidan Gomez氏らによって2019年に設立されたカナダのAIスタートアップ。 OpenAIと同様、LLMの開発に特化しており、企業向けにチャットボット、検索エンジンの最適化、要約サービス、自社AIモデルのAPIなどを提供している。 Command R+は、同社が3月に発表した「Command R」の後継となるモデルであり、Cohereが得意とする高い効率性と精度のバランスを重視したRシリーズの一部となる。 128K(12万

                                                                      GPT-4レベルの衝撃 PC内で使えるオープンLLM「Command R+」
                                                                    • ラズパイで動く大規模言語モデルがGitHubで公開 性能は“GPT-3相当”、Metaの「LLaMA」派生

                                                                      LLaMAは米Metaが独自開発した大規模言語モデル。LLM分野の研究推進を支援するため、研究者向けに2月にリリースした。大規模インフラを利用できない研究者のために小規模ながら性能の高いことが特徴で、7B(=70億)、13B、33B、65Bの4種類のパラメーターを用意している。13Bモデルはベンチマークで米OpenAIのLLM「GPT-3」を上回るという。 米スタンフォード大学は、LLaMAの7Bモデルを派生させ独自のLLM「Stanford Alpaca」を開発。このモデルは研究や学術目的でのみ利用でき、娯楽や商用での利用は禁止している。Alpaca LoRAでは、Stanford Alpacaが生成するトークン(単語列)を再現できるという。 関連記事 Meta、独自大規模言語モデル(LLM)の「LLaMA」を限定リリース Metaは独自の大規模言語モデル「LLaMA」(Large La

                                                                        ラズパイで動く大規模言語モデルがGitHubで公開 性能は“GPT-3相当”、Metaの「LLaMA」派生
                                                                      • ⼤規模⾔語モデルの拡張(RAG)が 終わったかも知れない件について

                                                                        Online-Dokumentation, die hilft: Strukturen, Prozesse, Tools

                                                                          ⼤規模⾔語モデルの拡張(RAG)が 終わったかも知れない件について
                                                                        • 数十億パラメータの巨大AI、“たった1つのパラメータ”を削除するだけで完全崩壊。Appleなどが研究報告(生成AIクローズアップ) | テクノエッジ TechnoEdge

                                                                          2014年から先端テクノロジーの研究を論文単位で記事にして紹介しているWebメディアのSeamless(シームレス)を運営し、執筆しています。 1週間の気になる生成AI技術・研究をいくつかピックアップして解説する連載「生成AIウィークリー」から、特に興味深いAI技術や研究にスポットライトを当てる生成AIクローズアップ。 今回は、大規模言語モデル(LLM)の数十億のパラメータの中でたった1つのパラメータを削除するだけで、モデルのテキスト生成能力が完全に崩壊することを発見した論文「The Super Weight in Large Language Models」に注目します。 研究チームは、このパラメータを「スーパーウェイト」と名付けました。70億のパラメータを持つMetaのLlama-7Bモデルでは、このスーパーウェイトをゼロにするだけで、モデルのテキスト生成能力が完全に失われ、ゼロショッ

                                                                            数十億パラメータの巨大AI、“たった1つのパラメータ”を削除するだけで完全崩壊。Appleなどが研究報告(生成AIクローズアップ) | テクノエッジ TechnoEdge
                                                                          • Sakana AI、科学論文の調査から作成、レビューまですべてAIが自動で実行するThe AI Scientistを発表 | gihyo.jp

                                                                            Sakana AI⁠⁠、科学論文の調査から作成⁠⁠、レビューまですべてAIが自動で実行するThe AI Scientistを発表 Sakana AIは2024年8月13日、大規模言語モデル (LLM) を複数組み合わせてアイデアの生成、必要なコードの記述、実験の実行/結果の要約、視覚化、レビューまで、論文作成のライフサイクル全体を自動化するAI駆動型の論文作成システム「The AI Scientist」を発表した。 The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 「AIサイエンティスト⁠」⁠: AIが自ら研究する時代へ(上記ブログの日本語訳) Introducing The AI Scientist: The world’s first AI system for automating sc

                                                                              Sakana AI、科学論文の調査から作成、レビューまですべてAIが自動で実行するThe AI Scientistを発表 | gihyo.jp
                                                                            • 10倍速の効率に専門医レベルの回答精度―医師はChatGPTなどの生成AIをどう扱うべきか?|医師のキャリア情報サイト【エピロギ】

                                                                              10倍速の効率に専門医レベルの回答精度―医師はChatGPTなどの生成AIをどう扱うべきか? 「医師による医師のためのChatGPT入門 臨床がはかどる魔法のプロンプト」著者インタビュー 大塚 篤司 氏(皮膚科医/近畿大学医学部皮膚科学教室主任教授) 2024.07.18 簡単な指示文(プロンプト)を入力するだけで、専門家のような文章や画像などを即座に回答する生成AI。2022年にOpenAI社が発表したChatGPTに始まり、精度や機能のめざましい進歩とともに各業界で存在感を増しています。 医療分野でも、生成AIへの期待は高まっています。しかし、中には使い方がわからなかったり、安全性の懸念がぬぐえなかったりして活用に踏み切れない医師の方もいらっしゃるのではないでしょうか。 「確実にできることは増えるし、仕事が早くなります。作業速度は体感”10倍速”」と生成AI活用による驚異的な変化を語る

                                                                                10倍速の効率に専門医レベルの回答精度―医師はChatGPTなどの生成AIをどう扱うべきか?|医師のキャリア情報サイト【エピロギ】
                                                                              • ニュー速VIPã‚’AIに作らせたらあまりにも解像度が高くて自分もひろゆきも全部AIだったのかと錯覚しそうになる

                                                                                深津 貴之 / THE GUILD @fladdict THE GUILD。行動・認知・体験のデザイナです。 ネットを知の高速道路として復活させたい。 note.comもお手伝いしています。 書き物 → note.com/fladdict theguild.jp

                                                                                  ニュー速VIPをAIに作らせたらあまりにも解像度が高くて自分もひろゆきも全部AIだったのかと錯覚しそうになる
                                                                                • フリーで使える日本語の主な大規模言語モデル(LLM)まとめ

                                                                                  ありがとうございます! 実は私本人がそのモデルの構築に関わっているのですが、詳細はまだ言えない状況です...。 来年3月の言語処理学会年次大会(NLP2023)での続報をお待ちください!このモデルに関する論文が公開される予定です(一応それを待ってからこの記事にも掲載します)。 (私が書いたものではありませんが、現段階で公開できる情報をまとめた記事があります: https://note.com/utokyo_itc/n/nb18b2a753f23 )

                                                                                    フリーで使える日本語の主な大規模言語モデル(LLM)まとめ

                                                                                  新着記事