Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without
TL;DR reference ãå å®ãã¦ããç¹ã3,4ç« ã®ãã©ã±ããè¨æ³ã®å°å ¥ã5ç« ã®ãµã³ããªã³ã°ã®èª¬æãã¯è¯ãã£ã 7ç« ä»¥éã®ç©çã¸ã®å¿ç¨ã«é¢ãã¦ã¯ãã話çãªå 容ã ã£ããã©ã®ãããå¬ãããã¨ãªã®ãã±ã£ã¨è¦ã§å¤æã§ããªããã®ãå¤ãã£ã ç©çã®è¨èãä¾ã§èª¬æããã¦ããé¨åãå¤ããç©çãå¦ãã§ããï¼ãï¼äººããã£ã¼ãã©ã¼ãã³ã°ãå¦ã¶ã¨ãã«èªãã§ã¿ãæ¬ãã¨ããå°è±¡ \[\def\bra#1{\mathinner{\left\langle{#1}\right|}} \def\ket#1{\mathinner{\left|{#1}\right\rangle}} \def\braket#1#2{\mathinner{\left\langle{#1}\middle|#2\right\rangle}}\] çè«ç©çã®ç 究è ãæ¸ããããã£ã¼ãã©ã¼ãã³ã°ã¨ç©çå¦ããåºçãããã¨ãã話ãç®ã«ããã®ã§ãä¸éãèªã
çæ°ç³»ãã¿ããã½ã³ã³ããã©ã³ã¹èªã®è©±ãä¸å¿ã éåãã¬ãã¼ãã¼ã·ã§ã³ãè¶ å¼¦çè«ã®ç解ãç®æãã¦åå¼·ãç¶ãã¦ãã¾ãï¼ ããã£ã¼ãã©ã¼ãã³ã°ã¨ç©çå¦ åçãããããå¿ç¨ãã§ããï¼ç°ä¸ç« è©ãå¯è°·æ夫ãæ©æ¬å¹¸å£«ãï¼Kindleçï¼ï¼åèæ¸ç±ï¼ å 容紹ä»ï¼ 人工ç¥è½æè¡ã®ä¸æ¢ããªã深層å¦ç¿ã¨ç©çå¦ã¨ã®ç¹ããã俯ç°ãããç©çå¦è ãªãã§ã¯ã®è¦ç¹ã§åçããå¿ç¨ã¾ã§ã説ãã空åã®å ¥éæ¸ãç©çã¯æ©æ¢°å¦ç¿ã«å½¹ç«ã¤!æ©æ¢°å¦ç¿ã¯ç©çã«å½¹ç«ã¤! 2019å¹´6æ22æ¥åè¡ã286ãã¼ã¸ã èè ã«ã¤ãã¦ï¼ ç°ä¸ç« è©ï¼ ç 究è æ å ±ãarXiv.orgè«æ å士(çå¦)ã2014年大éªå¤§å¦å¤§å¦é¢çå¦ç 究ç§ç©çå¦å°æ»å士å¾æ課ç¨ä¿®äºãç¾å¨ãçåå¦ç 究æç¹å¥ç 究å¡(é©æ°ç¥è½çµ±åç 究ã»ã³ã¿ã¼/æ°çåµé ããã°ã©ã ) å¯è°·æå¤«ï¼ ãã¼ã ãã¼ã¸ãTwitter: @TomiyaAkioãarXiv.orgè«æ å士(çå¦)ã2014年大
ã¯ãã㫠深層強åå¦ç¿ã®åéã§ã¯æ¥é²ææ©ã§æ°ããªã¢ã«ã´ãªãºã ãææ¡ããã¦ãã¾ã. ããããå¦ã¶ä¸ã§åºç¤ã¨ãªãã¢ã«ã´ãªãºã (ã¨ããããæ¦å¿µã«è¿ãï¼)ã¯Qå¦ç¿, SARSA, æ¹çå¾é æ³, Actor-Criticã®4ã¤ã ã¨æãããã®ã§, ãããã軸ã¨ãã¦ã¾ã¨ãã¦ã¿ããã¨æãã¾ã. 以ä¸ã®4ç¹ã¯ããããããäºæ¿ãã ãã. ã³ã¼ãã¯æ¸ãã¦ãã¾ãã. æ¦å¿µã®ã¿ã®èª¬æã§ã ä»ã®ã¢ã«ã´ãªãºã ã®åºç¤ã¨ãªãããéè¦ãªæ¦å¿µã«ã¤ãã¦ã¯è©³ããæ¸ãã¾ãã. ãã®ä»ã«ã¤ãã¦ã¯ç°¡æ½ã«æ¸ãã¾ãã 深層å¦ç¿ã«ã¤ãã¦ã¯ããç¨åº¦ç解ãã¦ããèªè ãæ³å®ãã¦ãã¾ã æ¸ãã¦ãããã¡ã«è¦æ¨¡ãã©ãã©ã大ãããªã£ã¦ãã¾ã£ãã®ã§, ã©ããã«å¿ ãééããä¸è¶³ãããã¾ã. ããã®å¼ãããããï¼ãããã®ã¢ã«ã´ãªãºã ã追å ããã¹ãï¼ããªã©ã³ã¡ã³ããããã°ãã²ãé¡ããã¾ã å ¨ä½å æ±ãã¢ã«ã´ãªãºã ãç¸é¢å³ã«ãã¦ã¿ã¾ãã(ç§ã®ã¤ã¡ã¼ã¸ã§ã). ã¾ã,
ã¯ããã«ï¼Optunaã¨ã¯ 使ãæ¹ ã¤ã³ã¹ãã¼ã« æé©ååé¡ã®ä¾ åé¡è¨å® æé©å æé©åã®çµæ ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ãã¤ãã¼ãã©ã¡ã¼ã¿ãã¥ã¼ãã³ã° åé¡è¨å® å®è£ ãã¤ãã¼ãã©ã¡ã¼ã¿ãå¼æ°ã«åãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãæ§æããé¢æ° ãã¤ãã¼ãã©ã¡ã¼ã¿ãå¼æ°ã«ã¨ããæé©åææ³ãè¿ãé¢æ° ãã¤ãã¼ãã©ã¡ã¼ã¿ãå¼æ°ã«åããå¦ç¿æ¸ã®ã¢ãã«ãè¿ãé¢æ° ãã¤ãã¼ãã©ã¡ã¼ã¿ãå¼æ°ã«åããæå°åãããå¤ãè¿ãç®çé¢æ° ããæé©å ã¯ããã«ï¼Optunaã¨ã¯ Optunaã¨ã¯PFNãä¸ã«éãåºããæé©åæåãã©ã¤ãã©ãªã§ãã Pythonã®ã³ã¼ãã¨ãã¦æ©æ¢°å¦ç¿ã®ã³ã¼ãã®ã©ãã«ã§ãå ¥ãããã¨ãã§ããé常ã«ä½¿ããããAPIã¨ãªã£ã¦ãã¾ãã大ä½ãçµæ§ä¸å¯§ãªãµã³ãã«ã»è§£èª¬ãå ¬å¼ããã¥ã¡ã³ãã«æ¢ã«ããã®ã§ãåããæ¹ã¯æ¤æ¹ãèªãã®ãä¸çªæ©ãã§ãããã Welcome to Optunaâs documentat
æ¨æ¥è©¦ããhyperoptã¨åããã¨ãoptunaã§è©¦ãã¦ã¿ãã æ¢ç´¢ããé¢æ°ã®å½¢ hyperoptã§è©¦ãããã®ã¨åãã2ã¤ã®èª¬æå¤æ°ã§ã極大å¤ãè¤æ°ããé¢æ° Z = 10**(-(X-0.1)**2)*10**(-Y**2)*np.sin(5*X)*np.sin(3*Y) optunaã«ããæé©å optunaã§ã¯ä»¥ä¸ã®ããã«ãã¦ãã©ã¡ã¼ã¿ã®æé©åãè¡ãã import numpy as np import optuna def objective(trial): x = trial.suggest_uniform('x', -1, 1) y = trial.suggest_uniform('y', -1, 1) return -10**(-(x-0.1)**2)*10**(-y**2)*np.sin(5*x)*np.sin(3*y) study = optuna.create_stud
6. BN (Batch Normalization) 代æ¿ã¸ ⢠Googleç¹è¨±ã¯ dropout, word2vec, DQN çãããç¥ããã¦ããããBNã»ã©ã®åºé¡å½æ°ã¯ç¨ ⢠BNã®ä»£æ¿ææ³éçºã¯åªå åº¦é« Group Normalization [Yuxin Wu+, ECCV2018] https://arxiv.org/abs/1803.08494 ⢠âbatch of training examplesâãå¿ ãããå¿ è¦ã¨ããªãæ£è¦å層 ⢠ç¹è¨±å¶åº¦ãã¤ããã¼ã·ã§ã³ãä¿é²ãã好ä¾ãªã®ã§ã¯ ç¹è¨±ã交ããä¼æ¥éã®ç 究éçºç«¶äºãé²ãã§ãã 7. ç¹è¨±æ¦äº æ³å®ãããã·ããªãª ãã³ã¼ããå ¬éãããããã¢ã«ã´ãªãºã ã®ç 究ã¯ä¸è¦ã ãã¼ã¿éãã¦ãã¨ã¯ãã¥ã¼ãã³ã°ã ããã¦ãã°ããã ã¨ããèãã®ä¼æ¥ãæ» ã¶ å·æ¦ç¶æ è»æ¡ç«¶äº ç±æ¦ ç¹è¨±ä¿äº ãããã«ã³ãã¡ã«æ°åæ¬éãä¼æ¥å士ã®æ³¥ä»å ç¹
2018å¹´10æ19æ¥éææ¥ãLeapMindã®ä¸»è¦æè¡ã§ããä½æ¶è²»é»åFPGAä¸ã§ãã£ã¼ãã©ã¼ãã³ã°ãå®ç¾ããã½ããã¦ã§ã¢ã¹ã¿ãã¯ãBlueoilãããªã¼ãã³ã½ã¼ã¹ï¼OSSï¼åãã¾ããã Deep Learningãããããã¢ãã«é©ç¨ãããDeep Learning of Things (DoT)ãã®ä¸çãå éããããã¨ãç®æãå¼ç¤¾ã¨ãã¦ã¯ãç®æ¨ã¨ããæªæ¥ã«ã¾ãä¸æ©è¿ã¥ããã®ã§ã¯ã¨æã£ã¦ããã¾ãã ãããæ©ã«ãå¤ãã®äººã«çµè¾¼ã¿Deep Learningãå°å ¥ãã¦ããã ããç§ãã¡ã®çæ´»ã«Deep Learningãã©ãã©ã浸éãã¦ãããã¨ãæãã§ãã次第ã§ãã ã§ã ã¯ãã¼ãºãã½ã¼ã¹ããªã¼ãã³ã½ã¼ã¹ã«ããã«ã¯ããããããªå±±ãè¶ããéãé§ããå·ã渡ããæµ·ã«æ²ããªã©æ§ã ãªå£ãã®ããããå¿ è¦ã ç¹ã«ãªãã§ãã ããããã¡ãããã³ã¼ãã£ã³ã°ãOSSã«å°ãã¾ã§ã«ã¯èããã®ãåå«ã«ãªãã¬ãã«ã®è¦æ©ãä¹
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
Deep Learning and Reinforcement Learning Summer School, Toronto 201829 Lectures · Jul 24, 2018 AboutDeep neural networks are a powerful method for automatically learning distributed representations at multiple levels of abstraction. Over the past decade, they have dramatically pushed forward the state-of-the-art in domains as diverse as vision, language understanding, robotics, game playing, graph
Xilinxãè²·åãããã£ã¼ãã©ã¼ãã³ã°ã®ã¹ã¿ã¼ãã¢ãã DeePhi Tech(æ·±é´ç§æ)ã¯æ¸ è¯å¤§å¦ã¨ã¹ã¿ã³ãã©ã¼ã大å¦ã®ç 究è ãã2016å¹´ã«å京ã«è¨ç«ãããã£ã¼ãã©ã¼ãã³ã°æè¡ãéçºããã¹ã¿ã¼ãã¢ããã§ãããã³ã³ãã¥ã¼ã¿ã¢ã¼ããã¯ãã£é¢ä¿ã®ãããã¯ã©ã¹ã®å¦ä¼ã§ãã2016å¹´ã®ISCAã§æåªç§è«æè³ãåè³ãããªã©ãé«ãæè¡åãèªãã DeePhi Techã¯ããã®å°æ¥æ§ããSamsungãMediaTekãªã©ãåºè³ãã¦ãããã2018å¹´7æã«åºè³å ã®1ã¤ã§ãã£ãXilinxãè²·åããç¾å¨ã¯Xilinxã®ä¸é¨ã«ãªã£ã¦ãããDeePhi Techã¯Xilinxã®FPGAããã£ã¼ãã©ã¼ãã³ã°ã®ã¨ã³ã¸ã³ã¨ãã¦ä½¿ã£ã¦ãããè³æ¬é¢ä¿ã ãã§ãªããç 究éçºã§ã両è ã®é¢ä¿ã¯æ·±ãã£ãã Hot Chips 30ã§ãã·ã³ã©ã¼ãã³ã°ãã©ãããã©ã¼ã ã«ã¤ãã¦çºè¡¨ããDeePhi Techã®Song Yao CE
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}