第21åSparkã®è¨è¨ã¨å®è£ ï¼»2ï¼½ï½Sparkã«ããããã¼ã¿å ±æã®ä»çµã¿ã¨èé害æ§ã®å®ç¾æ¹æ³ ç¿ç°æµ©è¼ï¼å±±ç°æµ©ä¹ 2016-06-08

Dataproc is a fully managed and highly scalable service for running Apache Hadoop, Apache Spark, Apache Flink, Presto, and 30+ open source tools and frameworks. Use Dataproc for data lake modernization, ETL, and secure data science, at scale, integrated with Google Cloud, at a fraction of the cost. Flexible: Use serverless, or manage clusters on Google Compute and Kubernetes. Deploy a Google-recom
ã¯ããã« ãã㯠ããªã³ã AdventCalendar ã®4æ¥ç®ã§ã ï¼æ¥ç®ã¯ã@arihh ããã«ãã 3å¹´ããããèåç¥ç¤¾éå¶ãã¦ãã ã§ã èªå·±ç´¹ä» @ka_nipan ããªã³ã ã«æ°åã§å ¥ç¤¾ããAndroidéçºãBtoBtoC ã®webãµã¼ãã¹éçºãçµã¦ãç¾å¨ã¯å¼ç¤¾ã¢ããªã®ãã°åéããéè¨ãå¯è¦åããã®ä»å¨è¾ºãã¼ã«ã¨ãã£ãåæåºç¤ã®é¢åãè¦ã¦ãã¾ã æ¬æ¥ã¯ãã®ãã¼ã¿åºç¤ã®è©±ãæ¸ãã¾ã ãã¼ã¿åæåºç¤å ¨ä½å³ å¼ç¤¾ã§ã¯ Hadoop ããªã³ãã¬ã§éç¨ãã¦ãã¦ãããã«ãã°ãåæç¨ã®ãã¼ã¿ãç½®ãã¦ãã¾ã ã¡ãªãã éç¨ã³ã¹ããå®ã Treasure DataãBig QueryãAmazon Redshift çã®å¤é¨ãµã¼ãã¹ã使ãããã¯å®ãæ¸ã¿ã¾ã èªç±åº¦ãé«ã åãµã¼ãã¹ã«ã¯å®¹éãã¯ããè²ã ã¨å¶éããã£ããããã¡ãã®è¦æ±ä»æ§ã«ãããããªãé¨åãå°ãªãããããã¾ãããèªåã®å ´åãã®è¾ºã¯è
Learn more about our active development of Presto 2.0, the C++ native engine and next-generation version of Presto. â What is Presto?Presto lets you query massive datasets across multiple data sources with sub-second performance. Whether itâs ad hoc analytics or powering real-time apps, Presto is fast, reliable, and efficient at any scale.
Hadoopããããå¦çã®é«éåã«æ´»ç¨ãã¦ãããã¼ãã©ã¹ã»ãã¯ããã¸ã¼ãºã¯ãããã°ãã¼ã¿ã®ãã¼ã ã«çã£åããç°è«ãå±ããããããã°ãã¼ã¿ã¯ä¸èº«ã®ãªãããºã¯ã¼ããã¨æè¨ãã代表åç· å½¹ç¤¾é· ç¥æé£å¿æ°ã«ããã®çæãèããã Hadoopï¼ããã°ãã¼ã¿ã¯å¤§ããªèª¤è§£ ãã¼ãã©ã¹ã»ãã¯ããã¸ã¼ãºã¯ãåºå¹¹ç³»ã·ã¹ãã åãã®ããã«ã¦ã§ã¢ãæãããå½ç£ãã³ãã£ã¼ãWebãµã¼ãã¹ã®ããã«æ±ºãã¦æ´¾æã§ã¯ãªãããããããããã¦ã³ããã¨ãé£è¡æ©ãé£ã°ãªãã¨ããç é¢ã§äººãæ»ãã§ãã¾ãã¨ããé»è»ãåããªãã¨ããçæ´»ã«å½±é¿ãåºãåéãï¼ç¥ææ°ï¼ã¨ãããã¾ãã«ããã·ã§ã³ã¯ãªãã£ã«ã«ãªé åã®ITã§ãå社ã®è£½åã¯æ´»ç¨ããã¦ããã å社ã®ãAsakusa Frameworkãã¯ãHadoopãæ´»ç¨ããåæ£å¦çã«ãããåºå¹¹ç³»ãããã®é«éåãå®ç¾ãããç¥ææ°ã¯ããHadoopã¨ããã¨ãWebãSNSç³»ãBIããã¼ã¿è§£æã§ã®ä½¿ãæ¹ãã¡
Hadoop 1.0.0ããªãªã¼ã¹ããããã¾ãä¸èº«ã®ã»ã¨ãã©ã¯ãã ã® 0.20.x å®å®æ¿ãªãªã¼ã¹ãªã®ã§ç¹å¥ã«è¨ããã¨ã¯ãªããã ãã©ã詳ããã¯ä»¥ä¸ã®blogãèªãã®ãããããã hadoopã®ãã¼ã¸ã§ã³è¡¨è¨ã«ã¤ã㦠- ç§å¦ã¨éç§å¦ã®è¿·å®® ãã ãã²ã¨ã¤ã ãã³ã£ããããã®ã¯ãwebhdfsãªãæ©è½ãå ¥ã£ã¦ãããã¨ã(ãã®blogã§ãã話é¡ã«ãã¦ãã)Hoopã¨ä¸¦ãã§ãããªãããªãã®ããããã¨èªä½ã¯ç¥ã£ã¦ããã©ããã¾ãèå³ãªãã£ãã®ã ããApache Hadoopã®ããã±ã¼ã¸ã«(Hoopããå ã«)å ¥ã£ãã¨ãªãã¨ã¡ãã£ã¨æ³¨ç®ããããããªãã ããhttpfs(Hoop)ã¨webhdfsããååãä¼¼ã¦ã¦è¶ ã¾ãããããããã£ããä½ããªããªã®ã ãªãèªåã¯WebHDFSã¯APIãªãã¡ã¬ã³ã¹ãèªãã ã ãã§ãå®éã«ã¯ã«ã±ã©ã触ã£ã¦ããªãããã®ç¶æ³ã§ã®ç解ã«ããå 容ãªã®ã§ã注æãã¦èªãã§ãã ããã å ã«çµè«
ãã¢ãã²ã¼ã®å¤§è¦æ¨¡ãã¼ã¿ãã¤ãã³ã°åºç¤ã«ãããHadoopæ´»ç¨ãï¼Hadoop Conference Japan 2011ï¼ #hcj2011 2011/02/22 [ç»å£å¾ã¨ã³ããª] ï¼" ãã¢ãã²ã¼ã®å¤§è¦æ¨¡ãã¼ã¿ãã¤ãã³ã°åºç¤ã«ãããHadoopæ´»ç¨ãï¼Hadoop Conference Japan 2011 #hcj2011 ã§ç»å£ãã¦ãã¾ãã " http://d.hatena.ne.jp/hamadakoichi/20110222/p1Read less
Hadoopã¯åæ£å¦çã«ãã£ã¦ã大éãã¼ã¿ã®ä¸æ¬å¦çãRDBMSãããå¤§å¹ ã«é«éåã§ããããã«ã¦ã¨ã¢ã§ãããã¾ã§ã¯ãã°è§£æãªã©ç¹å®ã®åéã§ä½¿ããã¦ãããããããåºå¹¹ãããå¦çã«é©ç¨ããããã®ãã¬ã¼ã ã¯ã¼ã¯ãç»å ´ããããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã¨ã¢ã®ãAsakusaãã§ããã æ¬é£è¼ã§ã¯ãAsakusaã®éçºè²¬ä»»è ããã®å ¨ä½åã解説ãããHadoopããªãéãã®ãã解説ãããã¨ãAsakusaã®æ§æè¦ç´ ãè¨è¨æ¹æ³ãå®éã®ã³ã¼ãã£ã³ã°ä¾ã示ãã
NTTãã¼ã¿ï¼å½å äºæ¥ä¼ç¤¾ï¼ ä¼æ¥æ å ± ãããã£ã¼ã« 社é·ã¡ãã»ã¼ã¸ å½¹å¡ä¸è¦§ NTTãã¼ã¿ã®ãã¯ããã¸ã¼ NTTãã¼ã¿ã°ã«ã¼ãï¼ææ ªä¼ç¤¾ï¼ ä¼æ¥æ å ± ãããã£ã¼ã« 社é·ã¡ãã»ã¼ã¸ Our Way å½¹å¡ä¸è¦§ ãµã¹ããããªãã£ æ²¿é© ã°ã«ã¼ãä¼ç¤¾ åè³ã»æåæ´»å åå¼å ä¼æ¥ã®çæ§ã¸ NTT DATA, Inc.ï¼æµ·å¤äºæ¥ä¼ç¤¾ï¼ ä¼æ¥æ å ±
As a research intern here at Last.fm, dealing with huge datasets has become my daily bread. Having a herd of yellow elephants at my disposal makes this a lot easier, but the conventional way of writing Hadoop programs can be rather cumbersome. It generally involves lots of typing, compiling, building, and moving files around, which is especially annoying for the âwrite once, run never againâ progr
Facebookãæ°ãããµã¼ãã¹ãMessagesãã®åºç¤ã¨ãã¦ãNoSQLãã¼ã¿ãã¼ã¹ã®ãHBaseããé¸æãããã¨ããå æ¥ã®è¨äºãFacebookãæ°ãµã¼ãã¹ã®åºç¤ã«ããã®ã¯ãMySQLã§ãCassandraã§ããªããHBaseã ã£ããã§ç´¹ä»ãã¾ããã HBaseã¯ãFacebookã«ããã¨æ¬¡ã®ãããªç¹å¾´ãåãã¦ããã¨èª¬æããã¦ã¾ãã è² è·ã«å¯¾ãã¦é常ã«é«ãã¹ã±ã¼ã©ããªãã£ã¨æ§è½ãçºæ® Cassandraãããã·ã³ãã«ãªConsistency Modelï¼ä¸è²«æ§ã¢ãã«ï¼ãåãã¦ãã èªåãã¼ããã©ã³ã¹ããã§ã¤ã«ãªã¼ãã¼ãå§ç¸®æ©è½ ãµã¼ãã¼ãã¨ã«æ°ååã®ã·ã£ã¼ããå²ãå½ã¦å¯è½ããªã©ãªã© ãã®HBaseã¯ã©ã®ãããªãã¼ã¿ãã¼ã¹ãªã®ã§ããããï¼ æ å ±ãéãã¦ã¿ã¾ããã HBaseå ¥éã®ãã¬ã¼ã³ãã¼ã·ã§ã³ æåã«ç´¹ä»ããã®ã¯ãHBaseã¨ãã³ã¸ã§ãªã¹ããTatsuya Kawanoæ°ã®ãã¬ã¼ã³
æè¿å 麺ã«ããã£ã¦ãã太ç°ã§ãã ã°ã¼ã°ã«ãåæ£å¦çã®ããã«ãã¶ã¤ã³ãããè¨èªãSawzallãããªã¼ãã³ã½ã¼ã¹ã§å ¬é ? Publickeyã§ç´¹ä»ããã¦ããã並åãã°è§£æåãè¨èªãSawzallãã試ãã¦ã¿ã¾ãããåããæ¹ã®ããã¥ã¡ã³ããå°ãªãã£ãã®ã§ãç´¹ä»ã¨ã³ããªãæ¸ãã¦ã¿ã¾ãã ããã¸ã§ã¯ããã¼ã¸ ããã¥ã¡ã³ã Sawzallã«ã¤ãã¦ã¯ã5å¹´åã«è«æãçºè¡¨ããã¦ããä¸é¨æ¦è¦ãç¥ããã¨ã¯åºæ¥ã¾ããããå æ¥å®è£ ããªã¼ãã³ã½ã¼ã¹ã§å ¬éããã¾ãããè«æã®ç¬¬ä¸èè ã¯UNIXãPlan9ã®éçºè ã§ç¥ãããRob Pikeæ°ã§ãã Interpreting the Data: Parallel Analysis with Sawzall MapReduceã®OSSå®è£ ã¨ãã¦ãHadoopããè¯ãç¥ããã¦ãã¾ãããHadoopåãã®è¨èªã¨ãã¦ã¯HiveãPigçãæåã§ãã Hive: MapRed
ã¯ããã« IBMçApache Hadoopï¼è±èªåï¼IBM Distribution of Apache Hadoop / é称ï¼IDAHOï¼ã¨ã¯ãIBMã®Java VMã§åããã¤ã³ã¹ãã¼ã©ã¼ä»ãApache Hadoopã§ããå é²ãã¯ããã¸ã¼ã»ã½ããã¦ã§ã¢ã®ç¡åãã¦ã³ãã¼ããµã¤ããIBM alphaWorksãã§å ¬éããã¦ãã¾ãã æ¬è¨äºå·çæç¹ã§ã¯ã32-bit Linux version of the IBM SDK for Java 6 SR 8ã§ç¨¼åãã¾ããã¾ããIDAHO-1.0ã§ã¯ãApache Hadoop version 0.20.2ããã¼ã¹ã«ãã¦ãã¾ãã IDAHOã«ã¯ãWeb-UIã«ããã¤ã³ã¹ãã¼ã©ã¼ãã¤ãã¦ãã¾ããSSHè¨å®ãJavaã©ã³ã¿ã¤ã ãHadoopãªã©ã®è¨å®ãèªåçã«è¡ãã¾ãã®ã§ãHadoopã¯ã©ã¹ã¿ã¼ã®ã»ããã¢ãããç°¡åã«è¡ãã¾ããã¾ããä¸åã®ä½æ¥ã§è¤
é«ä¿¡é ¼çµè¾¼ã¿ã½ããã¦ã§ã¢éçºï¼å§è¨å ï¼ä¸è¬ç¤¾å£æ³äººJASPARï¼ å ±åæ¸ï¼PDFå½¢å¼ï¼3,278KBï¼ ï¼ZIPå½¢å¼ï¼2,993KBï¼ ã½ããã¦ã§ã¢å·¥å¦ã®å®è·µå¼·åã«é¢ãã調æ»ç 究ï¼å§è¨å ï¼æ ªå¼ä¼ç¤¾ä¸è±ç·åç 究æï¼ å ±åæ¸ï¼PDFå½¢å¼ï¼2,501KBï¼ ã¯ã©ã¦ãã³ã³ãã¥ã¼ãã£ã³ã°æ代ã®Dependabilityã®èãæ¹ãªã©ã«é¢ããç±³å½ã®åå調æ»ï¼å§è¨å ï¼æ ªå¼ä¼ç¤¾ã¢ã¤ã»ãã¼ã»ãã£ï¼ å ±åæ¸ï¼PDFå½¢å¼ï¼4,583KBï¼ ï¼ZIPå½¢å¼ï¼4,300KBï¼ ã¯ã©ã¦ãã»ã³ã³ãã¥ã¼ãã£ã³ã°ã«é¢ããå½å å¤ã®å¶åº¦ã»æè¡ååçã®èª¿æ»ç 究ï¼å§è¨å ï¼æ ªå¼ä¼ç¤¾éæç·åç 究æï¼ å ±åæ¸ï¼PDFå½¢å¼ï¼2,050KBï¼ é«ä¿¡é ¼ã¯ã©ã¦ãå®ç¾ç¨ã½ããã¦ã§ã¢éçºï¼åæ£å¶å¾¡å¦çæè¡çã«ä¿ããã¼ã¿ã»ã³ã¿ã¼é«ä¿¡é ¼åã«åããå®è¨¼äºæ¥ï¼ï¼å§è¨å ï¼æ ªå¼ä¼ç¤¾ã¨ãã»ãã£ã»ãã£ã»ãã¼ã¿ï¼ ï¼PDFå½¢å¼ï¼9,606KBï¼ ï¼ZIPå½¢å¼ï¼8,656
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}