å½ç«å¤§å¦å¤§å¦é¢(å°æ»ï¼è¨å·è«çå¦)ãä¿®äºå¾ãç´ï¼å¹´éä¸é«ã®æ°å¦ï¼æ å ±ï¼æ師ã¨ãã¦å¤åã人身äºæ ããã£ããã«éè·ããç¾å¨ã¯ITã¨ã³ã¸ãã¢ãåå¼·ãããã¨ãã¾ã¨ãã¦ããã¾ãã
å½ç«å¤§å¦å¤§å¦é¢(å°æ»ï¼è¨å·è«çå¦)ãä¿®äºå¾ãç´ï¼å¹´éä¸é«ã®æ°å¦ï¼æ å ±ï¼æ師ã¨ãã¦å¤åã人身äºæ ããã£ããã«éè·ããç¾å¨ã¯ITã¨ã³ã¸ãã¢ãåå¼·ãããã¨ãã¾ã¨ãã¦ããã¾ãã
A diagram of an alias table that represents the probability distributionã0.25, 0.3, 0.1, 0.2, 0.15ã In computing, the alias method is a family of efficient algorithms for sampling from a discrete probability distribution, published in 1974 by Alastair J. Walker.[1][2] That is, it returns integer values 1 ⤠i ⤠n according to some arbitrary discrete probability distribution pi. The algorithms typic
ã¯ããã« æå®ãããéã¿ã«å¾ã£ã¦é¢æ£çãªå¤ã確ççã«é¸æããããã¨ãããã¨ããããããä¾ãã°[1,4,5]ã¨ããé åãä¸ããããæã確ç10%ã§0ã40%ã§1ã50%ã§2ã¨ããã¤ã³ããã¯ã¹ãè¿ããããªé¢æ°ã欲ããã æ®éã«èããã¨é¨ååãã¨ã£ã¦ä¹±æ°ãä¸åº¦æ¯ããã©ã®å ´æãé¸æããããäºåæ¢ç´¢ã§èª¿ã¹ããã¨ããã¢ã«ã´ãªãºã ãæãã¤ãããããã¯è¦ç´ æ°Nã«å¯¾ãã¦$O(\log(N))$ã®æéãããããlogã®æéã¨ããã®ã¯ç¡è¦ã§ãããã¨ãå¤ããããã®é¢æ°å¼ã³åºããé »ç¹ã«ããå ´åã«ã¯ç¡è¦ã§ããªãã³ã¹ãã«ãªãã ãã¦ããããªç¨éã®ããã«Walker's Alias Methodã¨ããã¢ã«ã´ãªãºã ãããããã®ææ³ã¯ä¸åº¦$O(N)$ã®æéã§é åãä½ã£ã¦ãã¾ãã°ãå¾ã¯$O(1)$ã§ã¤ã³ããã¯ã¹ãé¸ã¶ãã¨ãã§ããã ä¾ãã°éã¿ã¨ãã¦[3, 6, 9, 1, 2, 3, 7, 7, 4, 8]ã¨ãã10åã®è¦ç´ ã
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? [追è¨]çµ±è¨æ¤å®2ç´ãããããã¾ã§åæ ¼ãã¾ããã(åã®åé¨ããåã¯å¾ç¹ç65%ã§åæ ¼ã§ãã¾ãã) ãã®è¨äºã®æ¦è¦(ç®æ¬¡) ã¯ããã«: äºåã®çè ã®ã¹ãã¼ã¿ã¹ åå¼·æ¹æ³: ã©ããªåå¼·ãããã ãã®ã¡ãªããã¨ãã¡ãªãã æã£ããã¨ã»åãã£ããã¨: åå¼·ããã¦ã¿ã¦æã£ãã㨠åå¼·ãã¦ã¿ãªãã¨ããããªãã£ã ããä¸åº¦ããã¨ããããããªæ¹æ³ã§ãã: ç¾ç¶ã§æãããªã¹ã¹ã¡ã®é²ãæ¹ ä»ããåå¼·ããçããã«åãã¦äºåã«ç¥ã£ã¦ããã¦ã»ããã㨠çµæ: 試é¨ã®çµæ( çºè¡¨ãããã追è¨ãã¾ã(6/18) ) ã¯ããã« ç®ç èªåã®ä¸ã§ã®ã¹ãã«ãå¢ããã㨠Q
çµ±è¨ã®åºç¤ãç¥ã£ã¦ããç¨åº¦(çµ±è¨æ¤å®3ç´ã®éå»åã¯æºç¹ã«è¿ãã¬ãã«ã§è§£ãã¾ãã)ã大å¦æç³»åã§æ°å¦ã«ã¤ãã¦ã¯æ°â ãAãâ ¡ã¨æ°Cã®ä¸é¨ã復ç¿ãã¦ããç¶æ ã ããããä½ã§åé¨ããã ãããªã«æ·±ãæå³ã¯ãªãã£ãã§ããå¹´å§ã«ä¸å¸ã¨ç®æ¨è¨å®ããã¨ãã«ãã²ã¨ã¤ã®åå¼·ã®ç®å®ã¨ãã¦åé¨ãç®æ¨ã«è¨å®ãã¾ãããä»äºã§çµ±è¨ã»åæãªã©ããã£ã¦ããããã§ãªããä»å¾ã®æ¹åæ§ã¨ãã¦æ©æ¢°å¦ç¿ãªã©ããããããããã«ãæ°å¦ã®åºç¤ã¨çµ±è¨ãåå¼·ãã¦ãã¾ãã 主ã«ä½¿ã£ãææã¯ä»¥ä¸ã®3ã¤ã§ãã ã¾ãã¯ãã®ä¸åãã æå³ããããçµ±è¨å¦ (BERET SCIENCE) æ¹è¨ç æ¥æ¬çµ±è¨å¦ä¼å ¬å¼èªå® çµ±è¨æ¤å®2ç´å¯¾å¿ çµ±è¨å¦åºç¤ æ¥æ¬çµ±è¨å¦ä¼å ¬å¼èªå® çµ±è¨æ¤å® 2ç´ å ¬å¼åé¡é ã¾ãã¯ããã®ä¸åãã æå³ããããçµ±è¨å¦ (BERET SCIENCE)ããä½åº¦ãèªãã§æ¼ç¿ããã¦ç解ãã¾ãããé常ã«ããããããããã«ãªãã¾ããã 次ã«ããæ¥æ¬
ãã®è¨äºã«ã¤ã㦠å æ¥çµ±è¨æ¤å®ï¼ç´ã®è©¦é¨ãåãã¦ãã¾ãããæ¹å¼ã¯ãã½ã³ã³ã§åé¨ããCBTæ¹å¼ã§ãåãããã®å¾ã«åå¦ãåããè¦äºåæ ¼ï¼çµæã¯63/100ç¹ï¼åæ ¼ã©ã¤ã³ã¯60ç¹ãªã®ã§ã®ãªã®ãªï¼ã ã£ãã®ã§å ¨ãä½è£ãªåæ ¼ã§ã¯ããã¾ããã§ããã ãªãï¼é±éããåå¼·æéãªãã£ãã®ãã¨ããã¨ãæ¥ã ã®ä»äºãå¿ããåå¼·æéãåããªããæµç³ã«è©¦é¨ï¼é±éåã¯åå¼·æéã確ä¿ããªãã¨ã¤ãã¤ããã¨ãããã¨ã§æ»ã¬æ°ã§ç¢ºä¿ãã¾ããã ï¼ã§ã試é¨åæ¥ã¯çµå±ä»äºã«ãªã£ã¦ãã¾ããå®è³ªåå¼·æéã¯6æ¥Ã3æéï¼ ãªã®ã§ãã®è¨äºã¯ã試é¨ãåãããã¨ãã¦ãããã©ç§ã¨åãç¶æ ï¼âæ¥ã åå¼·æéãåããªãç¶æ ï¼ã§è©¦é¨ã«åããããã«ã¯ä½ããåå¼·ãããè¯ãã®ãæçãªã®ããã¨ããç¹ã§ãåèã«ãªãã°å¹¸ãã§ãã ï¼ãã¡ãã試é¨ç¯å²ãã¡ããã¨å ¨ã¦åå¼·ãã¦ä½è£ã§åæ ¼ããã®ã«è¶ãããã¨ã¯ããã¾ããï¼ ã¾ãçµ±è¨æ¤å®ï¼ç´ã«ã¤ã㦠以ä¸ã®ãµã¤ãã«ã¾ã¨ã¾ã£ã¦ããã¾
ãã®è¨äºã«ã¤ã㦠å æ¥çµ±è¨æ¤å®ï¼ç´ãåãã¾ãããèªå·±æ¡ç¹ã§åæ ¼ç¹ãæ¡ãã¦ããï¼ï¼å²å¼·ï¼ã®ã§ãåå¼·åã®èªåã«ä¼ããã¤ããã§åå¼·æ¹æ³ã«ã¤ãã¦ã¡ã¢ãæ®ãã¾ãã åå¼·ã®ã³ãã¯ãæ·±ãèããªããã¨ã åºç¤çµ±è¨å¦ã§ä½¿ãå ¬å¼ã«ã¯ãªã¼ãã¼ãã¯ããã¸ã¼ã使ããã¦ãã¾ãã ãã¨ãã°ä»¥ä¸ã¯æ¨æºæ£è¦åå¸ã®ç¢ºçå¯åº¦é¢æ°ã®å¼ã§ããããããã«åå¦è ã®ç解ãæãã§ãã¾ãã f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(x - \mu)^2} {2\sigma^2} \right) \hspace{20px} (-\infty < x < \infty) åãã¦æç§æ¸ãè¦ãã¨ãã¯é¢é£ããã¾ããããå¥ã«ä»ãã®å¼èªä½ãç解ããå¿ è¦ã¯ããã¾ãããçµ±è¨å¦ã®å ¬å¼ã«ã¯å°ãªãã¨ãæ®éã®å¤§å¦ã®ï¼ã»ï¼å¹´æ¬¡ã§ã¯ç解ã§ããªãæ°å¦ã使ããã¦ããã®ã§ãä»é å¼µã£ã¦èãã¦ãå¾å´ã«ãããã
ãã®åº¦ã2019年度ã®çµ±è¨æ¤å®1ç´ï¼çå·¥å¦ï¼ã«åæ ¼ãã¾ããã å»å¹´åº¦ã¾ã§ã¨åé¡ã®å¾åãå¤ããã対çã®æ¹åæ§ãå¤ãã£ã¦ããããªã¨æã£ãã®ã§ãå¦ç¿ã®å±¥æ´ã¨ã¨ã¨ãã«æ¥å¹´åº¦ã®åèã«ãªãã°ã¨æããå±¥æ´ãæ¸ãæ®ãã¦ã¿ã¾ãã çµ±è¨æ¤å®/çµ±è¨æ¤å®1ç´ã¨ã¯ï¼ çµ±è¨æ¤å®ã¯ãæ¥æ¬çµ±è¨å¦ä¼å ¬èªã®è³æ ¼ã§ãçµ±è¨é¢ä¿ã®è³æ ¼ã§ã¯ä¸çªã¡ã¸ã£ã¼ããããã¾ããã ä¸å¦çã¬ãã«ã®4ç´ããã大å¦å°é課ç¨ã®1ç´ã¾ã§ããããã¼ã¿ãµã¤ã¨ã³ã¹ã¸ã®é¢å¿ã®é«ã¾ãã¨ã¨ãã«åé¨è ãå¢ãã¦ããã¨ãã£ã±ãã®åã§ãã 1ç´ã¯ãå ¬å¼ã«ããã¨ã å®ç¤¾ä¼ã«ãããæ§ã ãªåéã«ããããã¼ã¿è§£æã®ãã¼ãºã«å¿ããããã®åºæ¬çãªè½åã®ç¿å¾å¦ä½ãåããã®ã§ããã¬ãã«çã«ã¯å®éçãªãã¼ã¿è§£æã«æ·±ããããããããªå¤§å¦ã§ã®å°éåéä¿®äºç¨åº¦ã¨ãªã£ã¦ãã¾ãã â¦ã¨è¨ã£ã¦ãããããããªãã¨æãã®ã§åé¡ãçºããå°è±¡ããè¨ãã¨ã çµ±è¨å¦ãç¨ããæ§ã ãªåéã®ã¢ã«ãããã¯ã§å¿ç¨ç 究ãå§ãã
2023å¹´11æ19æ¥ã«çµ±è¨æ¤å®1ç´ãåé¨ãï¼çµ±è¨æ°çï¼çµ±è¨å¿ç¨(社ä¼ç§å¦)ã«ããã«åæ ¼ã åå¼·æéåå¹´(ååãã©ãã©)ã§ä¸çºåæ ¼ã§ããçµé¨ããã¨ã«ä¸»è¦³è¾¼ã¿è¾¼ã¿ã§ç¶´ã£ã¦ããããã¨æãã çµè« çµè«ããããã¾ããçµ±è¨æ¤å®1ç´ã«åãããããã°ãããã¨ã¯ãã ã²ã¨ã¤ã ç¾ä»£æ°ççµ±è¨å¦ã®åºç¤ãå®ç§ã«ããã ããã ãã§ããç¾ä»£æ°ççµ±è¨å¦ï¼çµ±è¨æ¤å®æº1ç´ã¯ã¼ã¯ããã¯ï¼éå»åï¼ããã¾ããã ç¾ä»£æ°ççµ±è¨å¦ã®åºç¤ï¼ãã®æ¬ãä»ä¸ãåãã¾ã§ã¯æãã¤ããªãã¦ããã§ãã ãªãåãããè¨ãåããã®ã軽ã説æãã¦ããããã¨æãã¾ãã ç°¡åãªèªå·±ç´¹ä» æé½å ç§ç«å¤§å¦3å¹´çã大å¦ã®ææ¥ã§ç·å½¢ä»£æ°ï¼å¾®ç©ï¼ç¢ºççµ±è¨ã®åºç¤ã履修ãåé¨æã¯çç³»ã§æ°3ãåå¼·ãã¦ããããããã¾ã§æ°å¦ã«å¯¾ããæµæã¯ãªããã¨ãããæ°å¦ã«æµæã®ããæ¹ã¯çµ±è¨æ¤å®1ç´ã«åãã¦ãªãã¨æãã ãªãç¾ä»£æ°ççµ±è¨å¦ã®åºç¤ã ãã§ããã®ã çµ±è¨å¿ç¨ã®åå¼·ã¯ã©ãããã®ï¼ãã
å¤ãã®å¦çã®å£°ããçã¾ããï¼ä¸å¯§ãªè§£èª¬ã§ããããããä»ã¾ã§ã«ãªã大å¦ææ 大å¦1å¹´çã®âçµ±è¨å¦âã®åæ,ãããã¯éå¹´ã®è¬ç¾©ã§æç§æ¸ã¨ãã¦ã使ãããã ãã¾ãã ã¬ã¤ã¢ã¦ãã¯é«æ ¡ã®æç§æ¸ã¨åãããã«ãªã£ã¦ãã¾ããé·å¹´é«æ ¡æ°å¦ã®æç§æ¸ãçºè¡ãã¦ããæ°ç åºçãªãã§ã¯ã®ï¼èªãã§ããã大å¦ã®æç§æ¸ã§ãã çµ±è¨å¦ã¯, çç³»ã»æç³»ãåããå¦åã»ç 究ã«ããã¦å¤§åãªãã¼ã«ã§ããï¼ã¾ã ãã¹ã¦ã®äººã®å®çæ´»ã«æ ¹å·®ãã¦ããã¾ããããããªããï¼å¤§å¦ã§å¦ã¶è§£æå¦ï¼ä»£æ°å¦ã®ç¥èãå¿ è¦ã¨ãããã¨ï¼ãã¤è§£æå¦ï¼ä»£æ°å¦ä»¥å¤ã®çµ±è¨å¦ç¬ç¹ã®ä½æ³ãããããï¼å¦ç¿è ã«ãé£ãããã¨è¨ããããã¨ãããã¾ãã ãã®é£ããã®å æã«ã¯çµ±è¨å¦ã®åºç¤çãªäºæã®å¾¹åºããç解ã大åã§ãã æ¬æ¸ã¯ï¼çµ±è¨å¦ãå¦ã¶åæ©ï¼è¦³æ¸¬ã«ãã£ã¦å¾ãããå¤ããè¦åºãããã¨ï¼ãã®å¤ããã¨ã«æ¨å®ãæ¤å®ãè¡ãããã®ä¸éãã®ç¥èãï¼è¨ç®ã«ãã£ã¦å¾ãããçµæã®çµ±è¨çãªèå¯ã®ä»æ¹ã«ã¤
å¤ãã®å¦çã®å£°ããçã¾ããï¼ä¸å¯§ãªè§£èª¬ã§ããããããä»ã¾ã§ã«ãªã大å¦ææ æ £ã親ããã é«æ ¡ã®éãã£ã¼ãã¨åãä¾é¡å½¢å¼ã§æ§æãã¦ãã¾ãã å§å¦¹æ¸ãæ°ç è¬åº§ã·ãªã¼ãºã大å¦æé¤ãçµ±è¨å¦ãã«æ²è¼ãããç·´ç¿ã»ç« æ«åé¡166åï¼æ¬æ¸ããã£ã¼ãå¼ã·ãªã¼ãºã大å¦æé¤ãçµ±è¨å¦ãã«ã®ã¿æ²è¼ããã34åãå ã,è¨200åãä¾é¡å½¢å¼ã§è©³èª¬ãã大å¦æ°å¦ã®éãã£ã¼ãã§ãã ããããã®ä¾é¡ã«ã¯ï¼æåä¸å¯§ãªè§£çãä»ãã¦ããã¾ãã ã¾ãï¼ãã£ã¼ãå¼ã·ãªã¼ãºã®ç¹å¾´ã§ããããã®åé¡ã解決ããããã®èãæ¹ã示ãæéã,ããã³é¢é£ããåèäºé ã注æäºé ãªã©ã«ã¤ãã¦ãé©å®è§£èª¬ãå ã,ç解ãæ·±ã¾ãããã«ãã¦ãã¾ãã å§å¦¹æ¸ãæ°ç è¬åº§ã·ãªã¼ãºã大å¦æé¤ãçµ±è¨å¦ãã¨ä½µèªãããã¨ã§ï¼ããã«é«ãå¦ç¿å¹æãå¾ããã¾ãã
ããã«ã¡ã¯ï¼@t_kun_kamakiriï¼(âââ)ã æ¬è¨äºã§ã¯ãã¨ã³ãããã¼ãã«ã¤ãã¦ã§ããã ããããããã解説ããããã¨æãã¾ãã å®éã«ã¨ã³ãããã¼ã¯ç±åå¦ã®ä¸ã§ãç解ããããæ¦å¿µã§ããã®ã«ãç©çãå¦ãã ãã¨ããªã人ã§ã以å¤ã«ç¥ã£ã¦ããç¨èªã§ãããã¾ãã å½ããã°ã§ã¯ä»¥ä¸ã®ãããªæ§æã§è¨äºãæ¸ãã¦ããã¾ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}