æ ç»ãIn Silicoãï¼2020å¹´ãæ ç»ãµã¤ãï¼ãè¦ããä¸è¬å ¬éã¯ããã¦ããªãããã権å©è ã¨å¥ç´ã交ããã¦ããã¼ãã£ã«ä¸æ ä¼ããå®æ½ããå½¢ã¨ãªã£ããç¥ãåãã«ç´¹ä»ãããã½ã¼ã·ã£ã«ã¡ãã£ã¢çã§åããªã©ãã¦ãæ°å人ã®æ¹ã«è¦è´ããã ããï¼2022å¹´3æ11ï½12æ¥ã«å®æ½ï¼ã ãã®å¾2022å¹´9æã«ã¹ããªã¼ãã³ã°é ä¿¡ãå§ã¾ãããã¤ã§ãè¦ãããããã«ãªãã¾ããï¼ 22æ³ã®æ ç»ç£ç£ã«ããã10å¹´ããã¸ã§ã¯ãã ãIn Silicoãã¯ãå ¨è³ã®ã·ãã¥ã¬ã¼ã·ã§ã³ãç®æãç§å¦ããã¸ã§ã¯ãã追ã£ãããã¥ã¡ã³ã¿ãªã¼æ ç»ãå½æ22æ³ã ã£ãæ ç»ç£ç£Noah Huttonæ°ãã2010å¹´ãã10å¹´ããã¦åæãç¶ããæ ç»ã«ä»ä¸ããä½åã§ããã2021å¹´ã«ã¯ãç§å¦ç³»ãã³ãã£ã¯ã·ã§ã³ä½åã対象ã¨ããæ ç»è³ãåè³ãã¦ãã*1ã è¥ãHuttonæ°ããã®10å¹´ãããã®ããã¸ã§ã¯ãã«é§ãç«ã¦ãã®ã¯ã2008å¹´ã®TEDãã¼ã¯ã
æ ¶æ義塾大å¦å»å¦é¨ã§ã¯ä¸ä½ã©ã®ãããªç¥çµç§å¦ç 究ãè¡ããã¦ããã®ã§ããããï¼ æå 端ã®ç 究è ããé«æ ¡çã®çããã«ããããããç´¹ä»ãã¾ãã â» ã³ããææ対çã®ãããç 究è¬æ¼ã¯2021å¹´ã«è¡ãããè¬æ¼ãä¸é¨updateãã¦åç»ã¨ãã¦é ä¿¡ãã¾ãã
ç¥çµç§å¦ä¼ã¨é¢é£ã½ã¼ã·ã£ã«æ¯ãè¿ããPaperpileã®éç¨ãFigãä½ãããã®ã½ããã¦ã§ã¢ã«ã¤ãã¦éè«ãå¾åã¯ãä»»æã®æåãããªã¬ã¼ã¨ãã¦åãGPCRãâPlaceboâã«ããé®çãæ ããããããªãç¥çµåè·¯ã«ã¤ã㦠(9/1åé²) ãã³ã¢ã¹ã±ã¼ã ç¶ããèªã â
ãï¼ï¼«ã¹ã¼ãã¼ãã¤ãã¸ã§ã³ãã使ã£ã¦ãã¦ã¹ã®è³ãæ´»åããæ§åãæ®å½±ãããã¨ã«æ±äº¬å¤§å¦ãªã©ã®ç 究ã°ã«ã¼ããæåããã°ã«ã¼ãã¯è³ã®ä»çµã¿ã®è§£æãªã©ã«å½¹ç«ã¤å¯è½æ§ãããã¨ãã¦ãã¾ãã ãã®é¡å¾®é¡ã§ã¯å¾æ¥ãããåºãç¯å²ã観å¯ã§ãã極ãã¦å°ããæ°åã®ã·ããã¹ãä¸æã«å ã£ã¦æ å ±ãä¼ãããã¦ããæ§åãè³ãé¨åçã«åãã¦ããæ§åãªã©ãæ®å½±ããã¦ãã¾ãã ã¾ããæ åãåæããã¨åæã«å ãã·ããã¹ãå¤æ°ãããï¼ã¤ã®ç¥çµç´°èããã¤ãªãã£ãè¤æ°ã®ã·ããã¹ããåºãç¯å²ã§åæã«æ å ±ãä¼éãã¦ããæ§åãåãã¦ã¨ãããã¨ãããã¨ã§ãã æ¾å´ææã¯ããåãã¦æ åãè¦ãã¨ãã¯æåãããè³ã®ä¸ã§æ å ±ãã©ã®ããã«ããåãããã¦ããã®ãã詳細ã«è¦³å¯ã§ããã°ãå¦ç¿ãè¨æ¶ã¨ãã£ãè³ã®ä»çµã¿ãè³ã®ç æ°ã®è§£æã«ã¤ãªããå¯è½æ§ããããã¨è©±ãã¦ãã¾ãã
人éã®å ´åã«ã¯ãæé·ã«ä¼´ã£ã¦è³ã®æµ·é¦¬ã§ã®ãã¥ã¼ãã³æ°çãæ¸ããæå¹´ã«éããã¨å®å ¨ã«åæ¢ãããã¨ãå ±åããè«æããä»é±æ²è¼ãããã ãã¥ã¼ãã³ã¯é»æ°ã¤ã³ãã«ã¹ãä¼ããç´°èã§ã海馬å ã§ã®ãã¥ã¼ãã³æ°çã¯ãè¨æ¶ãæ°åãã¹ãã¬ã¹ãéåãç¥çµç¾æ£ã¨é¢é£ããéç¨ã ã¨èãããã¦ãããä¸é¨ã®åºä¹³é¡ã§ã¯ãæä½ã«ãªã£ã¦ã海馬ã§ã®ãã¥ã¼ãã³æ°çã¯ç¶ããããã¾ã§ã®ç 究ã§ã¯ã人éã®å ´åã海馬ã§ã®ãã¥ã¼ãã³æ°çãæ人æã¾ã§ç¶ããã¨ã示åããã¦ããããã¥ã¼ãã³æ°çã®ç 究ã¯ãå¦ç¿éç¨ãæ ç·é害ãããã³ç¥çµå¤æ§ç¾æ£ã®ç解ãåé²ãããå¯è½æ§ãããã¨èãããã¦ããã ããã«å¯¾ãã¦ãä»åã®Arturo Alvarez-Buyllaãã¡ã®ç 究ã§ã¯ããã¥ã¼ãã³æ°çãããã¾ã§èãããã¦ããã»ã©é·ãã¯ç¶ããªããã¨ã示åããã¦ããããã®ç 究ã§ã¯ãèå ããæ人ã¾ã§ã®ãã¾ãã¾ãªå¹´é½¢ã®è¢«é¨è ããåè¨59ç¹ã®è³çµç¹æ¤ä½ãæ¡åãããã¼ã«ã¼æä½ã使ã£
è³ã®æ·±é¨ãé侵襲çã«è¦³å¯ã§ãã人工çç©çºå ã·ã¹ãã AkaBLI âéé·é¡åç©ã«ãé©ç¨å¯è½ãé«æ¬¡è³æ©è½ã®ãªã¢ã«ã¿ã¤ã å¯è¦åã¸ã®å¿ç¨ï¼ è¦æ¨ çåå¦ç 究æï¼çç ï¼è³ç§å¦ç·åç 究ã»ã³ã¿ã¼ç´°èæ©è½æ¢ç´¢æè¡éçºãã¼ã ã®å®®èæ¦å²ãã¼ã ãªã¼ãã¼ï¼å éåå·¥å¦ç 究é åçå½å å¦æè¡ç 究ãã¼ã ãã¼ã ãªã¼ãã¼ï¼ã¨å²©éæºåºç¤ç§å¦ç¹å¥ç 究å¡ãã®å ±åç 究ã°ã«ã¼ãã¯ããã¿ã«ãç£çããååç©ï¼åºè³ªï¼ã¨ã¿ã³ãã¯è³ªï¼é µç´ ï¼ããã¼ã¹ã«æ°è¦ã®äººå·¥çç©çºå ã·ã¹ãã AkaBLIãéçºããçããåç©åä½æ·±é¨ããã®ã·ã°ãã«æ¤åºè½ãé£èºçã«åä¸ããã¾ããã AkaBLIã¯ã2013å¹´ã«éçºãã人工åºè³ªAkaLumineã¨ãAkaLumineã«åããã¦ä»åéçºããäººå·¥é µç´ Akalucããæ§æããã¾ããåç©åä½ã®ãã¤ãªã¤ã¡ã¼ã¸ã³ã°ã«ããã¦ã¯ãä¸è¬çã«ãã¿ã«ã®çç©çºå ã·ã¹ãã ï¼å¤©ç¶åºè³ªD-luciferin[1]ã¨å¤©ç¶é µç´ Fluc[2]ï¼ãç¨ã
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? åæ¸ããï¼ã人工ç¥è½ã¨è³ç§å¦ãï¼ æè¿ã®AI (Artificial Intelligence) ã®é²æ©ã¯ããã¾ããã§ãããç¹ã«ã深層å¦ç¿ (Deep Learning) ã¯TensorFlow, Chainerãªã©ã®ã©ã¤ãã©ãªã®æ®åããããä¸è¬çã«åºã使ç¨ãããç¥ãããæ¦å¿µã«ãªãã¾ããã ã¨ããã§ãDeep Learningã®æ´å²ãç°¡åã«ç´è§£ãã¦ã¿ãã¨ãã¯ããã¯è³ã®è¨ç®åçãå®è£ ãããã¨ãã試ã¿ãã¤ã¾ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ (Neural Network) ã®ç 究ããã¹ã¿ã¼ããã¾ããã人ã®è³ã¯100åã¨ãããããæ°ã®ç¥çµç´°èããã§ã
åºç¤ããã®ç¥çµç§å¦ã¨ãã¦ãä½åãã®ã·ãªã¼ãºã§ãæå 端ã®ç¥çµç§å¦ããã£ã¨ç解ã§ããããã«ãªãããã®ç¥èã身ã«ã¤ããããã®æ¬ãªã©ãç´¹ä»ãã¦ã¿ããã¨æãã¾ãã ç´ç²ã«ç¥çµç§å¦ãåå¼·ãã¦ãã¡ã¾ãã®èªç§°ãè³ç§å¦è ãã®è©±ããè³ç¥è©±ãã«æããããªãããã«ã¯ããã¯ãåºç¤ç¥èãæã¡ãç§å¦çãªæ¹æ³ãç§å¦ã«ã¤ãã¦ã®èãæ¹ããã£ããã¨èº«ã«ã¤ããå¿ è¦ãããã¨æãã¾ããçµå±ããµã¤ã¨ã³ã¹ã³ãã¥ãã±ã¼ã·ã§ã³ããã¾ããããªãåé¡ãæ¥æ¬ã®ã¡ãã£ã¢ã®ç§å¦è¨äºã®ã¬ãã«ãä½ãåé¡ãä¸è¬ã®äººã¨ç§å¦è ã®éã®ã®ã£ããã¨ããã®ã¯ãããã«åå ãããã¨ç§ã¯ã¿ã¦ãã¾ãã ããã§ä»åã¯ãåºç« ã¨ãã¦ãç§ãå¥ã®äºæ ã§èª¿æ»ãã¦ããé«æ ¡ã®çç©ã«ã¤ãã¦ãåé¨çã®éã§ã¯ãã¤ãã«ã®ããã«è¨ããã¦ããè©ä¾¡ã®é«ãåèæ¸ãç´¹ä»ãããã¨æãã¾ãããããªã¨ããããç´¹ä»ãå§ããã¨ããã¾ããã¨ããããæ¹ãå¤ãã¨æãã¾ãããç§å¦ã®æ¹æ³è«ãªã©ã«ã触ãã¤ã¤ãä½åãå¾ã«ã¯ç¥çµç§å¦æ
主ãªã¹ãã¤ã¯ãã¼ã¿è§£ææ³ã¨åé¡ åä¸ç´°èè¨é²ãã¼ã¿ã®è§£æ å¤çãªã¤ãã³ããããªã¬ã¼ã«ãã解æ æè¦åºæ¿ã®å示æå»ããåç©ã®åå¿æå»ãªã©ãå¤çãªå®é¨ã¤ãã³ãæå»ã« æããã¹ãã¤ã¯ç³»åã«å¯¾ãã解æã Spike Raster: ç¹å®ã®å¤çã¤ãã³ãåå¾ã®ã¹ãã¤ã¯ãã¿ã¼ã³ããã®ã¾ã¾è¡¨ç¤ºã PSTH(Peri-Stimulus Time Histogram): ç¹å®ã®å¤çã¤ãã³ãåå¾ã®ã¹ãã¤ã¯é »åº¦ã®æéå¤åã Fano Factor: ããæéå¹ ã«å ¥ãã¹ãã¤ã¯æ°ã®å¹³åã¨åæ£ã®æ¯ã ã¹ãã¤ã¯ç³»åèªä½ã試è¡ã«å¯¾ããå¤åæ§ã®ææ¨ã Mutual Information: ããæéå¹ ã«å ¥ãã¹ãã¤ã¯æ°ããã¤å¤çã¤ãã³ãã®æ å ±éã ã¹ãã¤ã¯æå»ãããªã¬ã¼ã«ãã解æ ãã¥ã¼ãã³ãã¹ãã¤ã¯ä¿¡å·ãçºããæå»ã¨ããå çãªæå»ãããªã¬ã¼ã«ãã解æã Auto-correlogram: èªå·±ç¸é¢
Hunched Over a Microscope, He Sketched the Secrets of How the Brain Works Illustrations by Santiago Ramón y Cajal, the Spanish neuroscientist, from the book âThe Beautiful Brain.â From left: A diagram suggesting how the eyes might transmit a unified picture of the world to the brain; a purkinje neuron from the human cerebellum; and a diagram showing the flow of information through the hippocampus
by Bryan Jones 人ãã©ã®ããã«å¦ç¿ãã¦ããã®ããããã¦1度å¦ç¿ãã¦ãã¾ã£ããæããããä¸å®ãã¯ã©ã®ããã«ãã¦æ¶ããã¨ãã§ããã®ãããè³å ã®ãã¥ã¼ãã³ã®åããå®éã«ä½é¨ãããã¨ã§ç解ã§ããã®ããNeurotic Neuronsãã§ãã Neurotic Neurons http://ncase.me/neurons/ ä¸è¨ã¦ã§ããµã¤ãã«ã¢ã¯ã»ã¹ããã¨ãã¤ã³ã¿ã©ã¯ãã£ããªã ã¼ãã¼ãåçãããã®ã§ãã¾ãã¯ãã¥ã¼ãã³ã1ã¤ãã¯ãªãã¯ãã¾ãã ããã¨ä¿¡å·ã軸索ãéã£ã¦é£ã®ãã¥ã¼ãã³ã¸ã¨éãããããã«ãã®ä¿¡å·ãé£ã®ãã¥ã¼ãã³ã¸ã¨éã°ãã¦ãããå ¨ä½ãæ´»çºåãã¦ããã®ããããã¾ããããã¯åç´åãããã¢ãã«ã§ãããè³ã§èµ·ãã£ã¦ããã®ã¯ã ããããããªæãã®ãã¨ã ããã§ãæããã¨ãå®å¿ãã«ã¤ãªãããã¥ã¼ãã³ãç»å ´ãã¦ã§ããµã¤ãä½æè ã®ãããã¼ã»ã±ã¼ã¹ããã¯ã人ã«å¤±æã ã¨è¦ãªããããã¨ãã誰ãã®è¿
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}