ã§ã¯ãä»åã¯ä»ã¾ã§è¦ã¦ããã¢ãã«ãä¸å¿ã«ãèªç¶è¨èªå¦çã®çºå±ã®æ´å²ã確èªãã¦ããããã¨æãã¾ãã æè¿è©±é¡ã®BERTããã®çºå±å½¢ã§ããXLNetãªã©ãæ´å²ã追ã£ã¦ããã¨ãã©ããã©ããããã®ããã©ããã£ãçµç·¯ã§èãåºãããã¢ã¤ãã¢ãªã®ãã¨ãããã¨ãããããããç解ãæ·±ã¾ãã¨æãã¾ãã ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ããèªç¶è¨èªå¦çã®åç¥è ã¾ããç´æ¥çã«ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã使ã£ãèªç¶è¨èªå¦çã§ã¯ããã¾ããããé常ã«å¤§ããªå½±é¿ãä¸ããã¢ãã«ãèãæ¹ãäºã説æãã¦ããã¾ãã æç³»åãã¼ã¿å¦çã¨ãã¦ã®å帰çãã¥ã¼ã©ã«ãããã¯ã¼ã¯(Recurrent Neural Network; RNN)ã®èªç - 1997å¹´ æç³»åãã¼ã¿ã«ããã¦å°æ¥ã®æ°å¤ãäºæ¸¬ããããã®ã¢ãã«ã¨ãã¦RNN(Recurrent Neural Network)ã¨ãããã®ãææ¡ããã¾ãããããã¯ãã¤ã³ããããæç³»åã®éå»ãã¼ã¿ã¨ãã¦å°
ã¾ããã®Gigazineããã¥ã¼ããã¾ããããããã¨ããããã¾ãï¼ï¼ gigazine.net åçªã§ããçæ§ã¯åã人ã®é·è©±ã«èã ãããã¨ã¯ãªãã§ãããããè¨ããããã¨ã¯çãã®ã«æèãã¤ããé·æãéãããã®ã«ã¦ã³ã¶ãªãããã¨ã¯ãªãã§ããããã ãããªçæ§ã®å£°ï¼ï¼ï¼ãåãã¦ãé·æãï¼è¡ãããã§çºãã¦ãããï¼å³å¯ã«ã¯ãæç« å ¨ä½ã®ä¸ã§ç¹ã«éè¦åº¦ã®é«ãæãæ½åºãã¦ãããï¼ã¨ã³ã¸ã³ IMAKITAãä½ã£ã¦ã¿ã¾ããã https://www.qhapaq.org/imakita/ 使ãæ¹ï¼ ã»ããã¹ãããã¯ã¹ã«æç« ãå ¥ããï¼æ¥æ¬èªã¯ããã/ãï¼ã/ãï¼ããä¸å½èªã¯ãããåºåããè±èªãã¹ãã¤ã³èªããã¤ãèªããã©ã³ã¹èªããã«ãã¬ã«èªãã¤ã¿ãªã¢èªã¯ã.ãåºåããæ¥æ¬èªã®ã¿æ¹è¡ãåºåãæ©è½ã試é¨çã«å°å ¥ä¸ï¼ ã»Squeezeãã¿ã³ãæ¼ã ã»çµæã楽ãã 使ç¨ä¸ã®æ³¨æï¼ ã»ç¡ä¿è¨¼ã§ã ã»æç« ãé·ãããã¨è½ã¡ã¾ã
åç½®ã åºæ¬åå¿è ã§ãã®ã§èª¿ã¹åãã¦ããªãé¨åã¯æãè¾¼ã¿ã§ãã£ã¦ãã¾ãã ã°ãã¡ããªã®ã§åããã¦ã¿ãªãã¨ãããã¾ã¦ãã ä»åã¯å¦ç¿ã§ãã¦ãªãå ´åã©ããªãããããã¾ããã åè Artiï¬cial neural networks approach to the forecast of stock marketprice movements ç°å¢ Windows10 Python 3.5.2 keras2.0 + TensorFlow1.3 jupyter 次ã®closeãäºæ¸¬ãã¦ã¿ã ãã¼ã¿ é貨 : USD_JPY 足 : æ¥è¶³ CSVèªãã¨ãããã from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import Adam
Data Visualization Now let's see what sort of data you have. You want data with various patterns occurring over time. plt.figure(figsize = (18,9)) plt.plot(range(df.shape[0]),(df['Low']+df['High'])/2.0) plt.xticks(range(0,df.shape[0],500),df['Date'].loc[::500],rotation=45) plt.xlabel('Date',fontsize=18) plt.ylabel('Mid Price',fontsize=18) plt.show() This graph already says a lot of things. The spe
ã注æï¼æ¬è¨äºã¯ãï¼ ITï¼Deep Insiderç·¨éé¨ï¼ãã¸ã¿ã«ã¢ããã³ãã¼ã¸ç¤¾ï¼ããdeepinsider.jpãã¨ãããµã¤ããããå 容ãæ¹å¤ãããã¨ãªãããã®ã¾ã¾ãï¼ ITãã¸ã¨è»¢è¼ãããã®ã§ãããã®ããç¨åç¨èªã®çµ±ä¸ã«ã¼ã«ãªã©ã¯ï¼ ITã®ããã¨ã¯ä¸è´ãã¾ãããããããããäºæ¿ãã ããã 誰ã§ããã£ã¼ãã©ã¼ãã³ã°ã®æ代 æ¨ä»ããã£ã¼ãã©ã¼ãã³ã°ã®è©±ãèããªãæ¥ã¯ãªããããºã¯ã¼ãã ã£ãææã¯ã¨ãã«éããä»ããå®ç¨åãã§ã¼ãºã¨ãã£ã¦ãéè¨ã§ã¯ãªãã ãããããã£ã¼ãã©ã¼ãã³ã°ã®åçèªä½ã¯é常ã«åç´ã§ãããæ¬è³ªã¯ãn次å ãã¯ãã«ç©ºéå ã®ç¹ã®éåããè¶ å¹³é¢ã§ä»åã£ã¦è¦ãããã¨ã§ãããããããè¨ç®ããã£ã¦ãããã©ã¤ãã©ãªããä½ç¨®é¡ãå ¬éããã¦ãããTensorFlowãªã©ãããã§ããããããã«ãã¦ãKerasã¨ããããã«ã³ã¼ãã£ã³ã°ãç°¡åãªã©ã¤ãã©ãªãçºè¡¨ããã¦ãããå人ãã¼ã¹ã§ã®ãã£ã¼ãã©ã¼ãã³
ããè¨ãã°ãã®ã·ãªã¼ãºé·ããæ¾ç½®ãã¦ã¾ããï¼æ±ï¼ããããããã®ããã°ããã¿åããèãããªã£ã¦ããã®ã§ãä»æ´ãããªå¤ããã¿ããã®ããã¨æãããã®ãæ¿ç¥ã§ãåã«èªåããã£ã¦ã¿ããã£ããããã¨ããã ãã®çç±ã§ä»æ´æã®ãããã¿ããããã¨ã«ãã¾ããã¨ãããã¨ã§ãä»åã®ãã¿ã¯LSTM-RNN (Long short-term memory Recurrent neural network)ã§ãããã¤ãéãå®å ¨ã«èªåå°ç¨ã®åå¿é²ã¨ãã¦ããæ¸ãã¦ãã¾ããã®ã§ãã¡ããã¨åå¼·ããã人ã¯ä»ã®ãã£ã¨ãã¡ãã¨ããè³æ*1ãæ¸ç±*2ãã½ã¼ã¹*3ãå½ãã£ã¦ãã ããããã è¶ çµ¶å¤§ãã£ã±ãªLSTM-RNNã®èª¬æ ã¶ã£ã¡ãã以ä¸ã®Qiitaã®è¨äºã¨äººå·¥ç¥è½å¦ä¼ã®æ·±å±¤å¦ç¿æ¬ããããèªãã°ååã¨ããæ°ããã¾ãã*4ãæã家ã«ã¯è²ã LSTM-RNNã«ã¤ãã¦è§£èª¬ããæ¸ç±ãããã®ã§ãã¡ããèªã¿ãªããè¶ çµ¶å¤§ãã£ã±ãã¤é©å½ã«èª¬æãã¦ããã¾
ã注æï¼æ¬è¨äºã¯ãï¼ ITï¼Deep Insiderç·¨éé¨ï¼ãã¸ã¿ã«ã¢ããã³ãã¼ã¸ç¤¾ï¼ããdeepinsider.jpãã¨ãããµã¤ããããå 容ãæ¹å¤ãããã¨ãªãããã®ã¾ã¾ãï¼ ITãã¸ã¨è»¢è¼ãããã®ã§ãããã®ããç¨åç¨èªã®çµ±ä¸ã«ã¼ã«ãªã©ã¯ï¼ ITã®ããã¨ã¯ä¸è´ãã¾ãããããããããäºæ¿ãã ããã ãã£ã¼ãã©ã¼ãã³ã°ã¨èªç¶è¨èªå¦ç ç»åèªèãé³å£°èªèã®åéã§ã¯ããã§ã«å§åçã¨ããããææãèªã£ã¦ããã®ããã£ã¼ãã©ã¼ãã³ã°ã§ãããç«ç»åèå¥ã®ãã¥ã¼ã¹ã«é©ãããã¦ãããããæ°å¹´ã®ãã¡ã«ãä¾ãã°ãGANï¼Generative Adversarial Networkï¼ãã¨ããæè¡ãéçºããã¦ãã¦ãããã使ãã¨ãæåã©ããä½ããªãã¨ããããåçã¨è¦ã¾ããç»åãçæãããã¨ãã§ãããã¾ãã«ããååã«é²æ©ããç§å¦ã¯éæ³ã¨åºå¥ãã¤ããªããã ã§ã¯ããã£ã¼ãã©ã¼ãã³ã°ã®ããä¸æ¹ã®æååéã§ããèªç¶è¨èªå¦çã®ç¶æ³ã¯ã©
ãã¼ã¿åæã¬ãåå¼·ã¢ããã³ãã«ã¬ã³ãã¼ 18æ¥ç®ã Kerasã®ä½¿ãæ¹ã復ç¿ããã¨ããã§ãä»åã¯æç³»åãã¼ã¿ãåãæ±ã£ã¦ã¿ããã¨æãã¾ãã æç³»åãåãæ±ãã®ã«ããã£ã¼ãã©ã¼ãã³ã°ã¯ç¨ãããã¦ãã¦ãRNN(Recurrent Neural Net)ã主æµã ä»åã¯ãRNNã«ã¤ãã¦æ¸ããå¾ãKerasã§å®éã«RNNãå®è£ ãã¦ã¿ã¾ãã ä»æ¥ã®åèæ¸ã¯ãã®æ¬ï¼ 詳解 ãã£ã¼ãã©ã¼ãã³ã° ~TensorFlowã»Kerasã«ããæç³»åãã¼ã¿å¦ç~ ä½è :å·£ç± æ è¼çºå£²æ¥: 2017/05/30ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼ RNNã¨ã¯ é常ã®Neural Networkã¨ã®éã 誤差éä¼ææ³ã®ã¢ã«ã´ãªãºã å¾é æ¶å¤±ã®å·¥å¤« : LSTMãGRU LSTM GRU èªç¶è¨èªãã«ãããAttention Model Keraså®è£ ãã¼ã¿ã®å¤å½¢ãå ¥å å¦ç¿ã¢ãã«æ§ç¯ å¦ç¿ã¨äºæ¸¬ çµæ ã¾ã¨ã RNN
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãç¥ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}