ãµã¤ã³ã¤ã³ããç¶æ ã§ããããããæ¼ãã¨ããã¤ãã¼ã¸ã® ããããå±¥æ´ãã«ä¸è¦§ã¨ãã¦ä¿åããã¦ããã®ã§ã å度èªã¿ãããªã£ãæãããã¨ã§ãã£ããèªã¿ããã¨ãã«ä¾¿å©ã§ãã
ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®ä¸æã§ãã webã§çºçãããã©ã³ã¶ã¯ã·ã§ã³ï¼è³¼è²·ãªã©ï¼ã®ä¸ã«ã¯ã確çåå¸ãä»®å®ãããã¨ã§æ½è±¡åã§ããç©ãããã¾ãã ä»åã¯ããã©ã³ã¶ã¯ã·ã§ã³ãçºçããç¾è±¡ãã¢ããªã³ã°ããææ³ã®ã²ã¨ã¤ã§ããBG/NBDã¢ãã«ã¨ããã®ææ³ã«ãã¨ã¥ãã¦å°æ¥çºçãããã©ã³ã¶ã¯ã·ã§ã³ã®åæ°ãäºæ¸¬ããããã®ã©ã¤ãã©ãªã§ããlifetimesãç´¹ä»ãã¾ãã ãã©ã³ã¶ã¯ã·ã§ã³ã®ã¢ããªã³ã°ã«ã¤ã㦠1987å¹´ã«Schmittleinçã«ãã£ã¦Pareto/NBDã¨ããã¢ãã«ãææ¡ããã¾ãããããã¯é¡§å®¢ã®ç¶ç¶çã«çºçãã購買è¡åã«ç¢ºçåå¸ãå½ã¦ã¯ãæ½è±¡åããææ³ã§ãçµæã¨ãã¦å°æ¥çºçãã購買ãäºæ¸¬ãããã¨ã«æåãã¾ããã顧客ãé¢è±ãããå¦ãã®å¤æã顧客ç涯価å¤ã®è¦ç©ãããå¯è½ã«ãªãã¨ããç¹ã§ãPareto/NBDã¢ãã«ã¯é¡§å®¢åæã«ãããé常ã«å¼·åãªãã¼ã«ã®ã²ã¨ã¤ã§ãã Pareto/NBDããã¼ã¹ã¨
æ¥é©ä¸åºå½äº§äºåº,äºæ´²æ¥é©å½äº§ä¸åºäºåºä¸åºè¿æ¬¾è½¯ä»¶çææ¾åè½åå强大ï¼è½å¤è®©ç¨æ·æåå°é常å¤ç²¾è´çç»é¢ä½éªå¹²åãæ¥é©å¨çº¿è§é¢ä¸åºäºåºä¸åº,ç²¾åå½äº§æ¥é©äºæ´²ä¸åºå¨çº¿è¿æ¬¾è½¯ä»¶æ¯å¹¿å¤§èå¸æºçæç±ï¼å¾å¤ç¨æ·å¨è¿éæåç¬ç¹æåã
ã¾ããã®Gigazineããã¥ã¼ããã¾ããããããã¨ããããã¾ãï¼ï¼ gigazine.net åçªã§ããçæ§ã¯åã人ã®é·è©±ã«èã ãããã¨ã¯ãªãã§ãããããè¨ããããã¨ã¯çãã®ã«æèãã¤ããé·æãéãããã®ã«ã¦ã³ã¶ãªãããã¨ã¯ãªãã§ããããã ãããªçæ§ã®å£°ï¼ï¼ï¼ãåãã¦ãé·æãï¼è¡ãããã§çºãã¦ãããï¼å³å¯ã«ã¯ãæç« å ¨ä½ã®ä¸ã§ç¹ã«éè¦åº¦ã®é«ãæãæ½åºãã¦ãããï¼ã¨ã³ã¸ã³ IMAKITAãä½ã£ã¦ã¿ã¾ããã https://www.qhapaq.org/imakita/ 使ãæ¹ï¼ ã»ããã¹ãããã¯ã¹ã«æç« ãå ¥ããï¼æ¥æ¬èªã¯ããã/ãï¼ã/ãï¼ããä¸å½èªã¯ãããåºåããè±èªãã¹ãã¤ã³èªããã¤ãèªããã©ã³ã¹èªããã«ãã¬ã«èªãã¤ã¿ãªã¢èªã¯ã.ãåºåããæ¥æ¬èªã®ã¿æ¹è¡ãåºåãæ©è½ã試é¨çã«å°å ¥ä¸ï¼ ã»Squeezeãã¿ã³ãæ¼ã ã»çµæã楽ãã 使ç¨ä¸ã®æ³¨æï¼ ã»ç¡ä¿è¨¼ã§ã ã»æç« ãé·ãããã¨è½ã¡ã¾ã
å½¢æ ç´ è§£æã¯æ¥æ¬èªå¦çã®åæ©ã§ãããæãåèªã«åå²ããããåè©ãæ´»ç¨å½¢ãåºæ¬å½¢ãåæããããã«è¡ãã¾ããæ¬è¨äºã§ã¯å½¢æ ç´ è§£æã®ãã¼ã«ãããã¤ãã®åºåä¾ã交ãã¦æ¯è¼ãã¦ããã¾ãã ï¼SentencePieceã§ããããããã¨ãã人ã¯ãå¼ã³ã§ãªãã§ãããããããæ¹ã«ã¯ãTwitterã®ãã¬ã³ããå¤ãªåå²ã«ãªã£ã¦ããå«ã§ã¯ï¼ã¨ç³ãä¸ãã¦ããããã§ãï¼ MeCab è¨ããã¨ç¥ããå½¢æ ç´ è§£æå¨ãã¨ããããMeCabã使ãã¨ãã人ã¯ä»ãªãå¤ããã¨ã§ããããã¨ã«ããé«éã§ããã¨ãããã¨ã¨ãã·ã¹ãã ã¨è¾æ¸ãåé¢ããã¦ããã®ãç¹å¾´ã§ããã¾ãPythonãã使ãã®ãç°¡åã«ãªãã¾ããï¼Janomeã¨ãããã®ãããã¾ãããmecab-python3ã®æ¹ãé«éã§ãï¼ãJavaãã使ããã人ã¯Kuromojiã使ãã°mecab(+ipadic)ç¸å½ã®çµæãå¾ãããã¯ãã§ãã è¾æ¸ã¯IPAè¾æ¸ãæ¨å¥¨ããã¦ãã¾ãããUn
å®è·µçãã¼ã¿ãµã¤ã¨ã³ã¹ ã¯ããã« ãã¼ã¿åæã®ããã«ã³ã³ãã¥ã¼ã¿ãå©ç¨ããéãRããã³Pythonè¨èªã®ããããã使ããã¨ãå¤ãã¨æãã¾ã(Juliaè¨èªã¯é«ã¬ãã«ã»é«ããã©ã¼ãã³ã¹ãªæè¡è¨ç®ã®ããã®è¨èªã§ä»å¾æå¾ ãè¨ãã¿ã¾ãï¼ããããã®2ã¤ã®è¨èªã§ã¯ããã¼ã¿æä½ãå¯è¦åããã¼ã¿åæãã¢ããªã³ã°ã«ä½¿ãããã©ã¤ãã©ãªãè±å¯ã«ããã ã©ãã使ãã®ãè¯ãã®ãè¿·ããããªç¶æ³ãç¶ãã¦ãã¾ãããããããã®ç¶æ ã¯è½ã¡çããè¦ããæçæãè¿ãã¤ã¤ããã¾ãã Rè¨èªã§ã¯ãã¤ãæ¼ç®åã®ç»å ´ã«ãããã¼ã¿ãã¬ã¼ã ã«å¯¾ããæä½ã«å¤§ããªå¤åãçããtidyverseã«ãããã¼ã¿èªã¿è¾¼ã¿ãããã¼ã¿æ´å½¢ãå¯è¦åã¾ã§ãå¯è½ã«ãªãã¾ãããã¾ãtidyverseã®ãããªãæ©æ¢°ã人éã®åæ¹ãæ±ããããããã±ã¼ã¸ãå¢ãã¦ãã¾ãããç¹ã«Rè¨èªã®å¼·åãªä¸é¢ã§ããã£ããã¼ã¿åæã®æä½ã¯tidymodelsã«ä»£è¡¨ãããããã±ã¼ã¸ãã¦ã¼ã¶ã®
æ©æ¢°å¦ç¿ã®å°ããã¨ã®ä¸ã¤ã¨ãã¦ãçµæã®è§£éãé£ãããã¨ããäºãããã¾ãã ç¹å¾´éãçµæã«ä¸ããå¹æãè©ä¾¡ããè¡ãåå¨ããã®ã§ãçµæã®è§£éãåºæ¥ãããããã¨ãå¤ãã§ãã è¨äºã§ã¯ã以ä¸ã®æ¹æ³ãç´¹ä»ãã¾ããã¢ãã«æ¯ã«ä½¿ããæã¨ä½¿ããªãæãããã®ã§æ³¨æ1ãã¾ãããã tå¤ã¸ãä¿æ°permutation importanceheat map è¨äºã§ä½¿ã£ã¦ããã½ã¼ã¹ã³ã¼ãã¯github ã«ç½®ãã¦ããã¾ãã https://github.com/msamunetogetoge tå¤ å§ãã¯tå¤ã解説ãã¾ããå®åã§ã¯å帰ã ãã§äºè¶³ãããã¨ãå¤ãã¨æãã¾ãããç¹å¾´éã®å¹æã測ãæ¹æ³ã®ä¸ã¤ã«ãtå¤ãããã¾ãã2 tå¤ã¯ã大ãããã°å¤§ããç¨å帰ä¿æ°ã«æå³ããã ã¨æãã¨è¯ãã§ãã å®ç¾©ã確èªããpython ä¸ã§è¡¨ç¤ºãã¦ã¿ã¾ãããã tå¤ã®å®ç¾© ç°¡åã®çºã«ãåå帰åæã®å ´åã§èãã¾ãããã $$\begin{
æ¦è¦ scikit-learnã®DecisionTreeClassificationã¢ãã«ã«feature_importances_ã¨ãããã©ã¡ã¼ã¿ã¼ãããããã®ãã©ã¡ã¼ã¿ã¼ã¯1次å é åã§ãç¹å¾´éçªå·ã«å¯¾ããéè¦åº¦ãå®æ°ã§æ ¼ç´ããã¦ããã ãã®feature_importances_ã«ã¤ãã¦ãå ¬å¼ããã¥ã¡ã³ãã§ã¯ä»¥ä¸ã®ããã«æ¸ããã¦ããã The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. ï½ç¹å¾´éã®éè¦åº¦ã¯ã対象ã¨ããç¹å¾´éããå¾ãããåºæºå¤ã®æ¸å°åã®ï¼æ£è¦åãããï¼åè¨å¤ãã¸ãéè¦åº¦ã¨ãã¦ãç¥ããã¦ãããï½ ã¨æ¸ããã¦ããã
ããã«ã¡ã¯ãkzã§ãã ä¸ã®ä¸ã§ã¯ãã¯ã解éæ§ãéè¦ãããã§ãã shapå¤ã§è§£éããåã«permutation-importanceãç¥ã ååãSHAPå«ãã¦ã¢ãã«è§£éã®ææ¨ã«ã¤ãã¦ããã¤ã触ãã¾ããããã¯ãä¸åº¦ã§ã¯åã¯æ®å¿µãªããç解ã§ããªãã®ã§å¾©ç¿ãå«ãã¦ä»åãã®è¨äºãæ¸ãã¾ãã ååã®å¾©ç¿ ä¸è¨ã®ãªã³ã¯å ãååã®è¨äºã«ãªãã¾ãã Permutation ImportancePartial DependenceLIMESHAP éã«ããããããã¨PIã¯å¯¾è±¡ã®å¤æ°ãã·ã£ããã«ãã¦ç²¾åº¦ã®å¤åãããã®å¤æ°ã®å½±é¿åãè¦ãææ³ãPDã¯å¯¾è±¡ã®å¤æ°ä»¥å¤ãå¨è¾ºåã§æ¶ããã¨ã«ãã£ã¦ãã®å¤æ°ã®ã¿ã®å½±é¿åãè¦ãææ³ãLIMEã¯å¯¾è±¡ã®å ¥åãã¼ã¿å¨è¾ºã§ãã©ãã¯ããã¯ã¹ã¢ãã«ãç·å½¢è¿ä¼¼ããã®éã¿ã§ããããã®å¤æ°ã®å¯ä¸å ·åãè¦ãææ³ãSHAPã¯LIMEã®ã¢ãã«ã«è¤æ°ã®å¶ç´ï¼Consistencyãªã©ï¼ãä¸ãã¦ã§ã
表示ï¼èä½æ¨©è ã®è¡¨ç¤ºç¾©åæã å¶å©ç®çï¼éå¶å©ï¼ï¼å©ç¨ã¯éå¶å©ã«éã æ¹å¤ï¼æ¹å¤ç¦æ¢ï¼ï¼ä¸åã®ç·¨éãç¦ãã ç¶æ¿ï¼é å¸ãããå ´åã¯ãå ã®ã©ã¤ã»ã³ã¹ãåãç¶ãå¿ è¦ãã 人ã®è¡åã®ãã¼ã¿ã»ãã Google DeepMind Youtubeããåéãã人éã®è¡åã«é¢ãããã¼ã¿ã»ãã https://deepmind.com å©ç¨æ¡ä»¶ï¼è¡¨ç¤º 人ã®è¡åã®ãã¼ã¿ã»ãã University of Central Florida ãµã¼ãã£ã³ãã¡ã¤ã¯ãé«åãããªã©ã®èªèç¨ã®ãã¼ã¿ã»ãã http://crcv.ucf.edu/ å©ç¨æ¡ä»¶ï¼ç¹è¨ç¡ãããã¼ã¸ä¸å¤®é¨ã«é£çµ¡å ãè¼ã£ã¦ãã¾ãã åãã®ãã¼ã¿ã»ãã MIT-IBM Watson AI Lab ã¢ã¼ã·ã§ã³ã«é¢ãããã¼ã¿ã»ããã 人é以å¤ã«ããç¬ããã³ããæµããæ°´ãã¢ãã¡ã¼ã·ã§ã³ãå«ã¾ãã¦å± ã¾ãã http://moments.csail.mit.ed
ãã®è¨äºã¯ä»¥ä¸ã®è¨äºã®ç¶ãã§ãã ã覧ã®éããæ©æ¢°å¦ç¿åé¡å¨3種ã§å¾åã¹ã³ã¢ãç®åºãã¦ã¿ããããããªçµæã«ãªã£ãããã§ãããã®ç¹ã«ã¤ãã¦ãå®ã¯å¾æ¥2ç¹ã»ã©ã³ã¡ã³ããããã ãã¾ããã1ã¤ã¯ãã³ã¡ã§ã çµ±è¨çå ææ¨è«(3): å¾åã¹ã³ã¢ç®åºãæ©æ¢°å¦ç¿ã«ç½®ãæãã¦ã¿ã㨠- æ¸è°·é§ åã§åããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®ããã° CMæ¥è§¦ç¾¤ã¨éæ¥è§¦ç¾¤ã«åãã¦ãå¾åã¹ã³ã¢ã®åå¸ãã¿ã¦ã¿ãã¨ã2群ã®ã¹ã³ã¢ã0.25ï½0.75ã§ããéè¤ãã¦ãã¾ãããå¾åã¹ã³ã¢ã0.25ï½0.75ã®ãã¼ã¿ã«çµã£ã¦æ¯è¼ããã¨ãã¨ããããã¯å¦¥å½ãªçµè«ãåºãã¨æãã¾ããå¾ã¯ãå¾å2016/10/12 21:46 ã¨ã®ãã¨ã§ãããããã¯ç¢ºãã«ãã®éãããã¨ãããã¨ã§ã試ãã¦ã¿ã価å¤ãããããã§ããä¸æ¹ã§åå¯éã®MLerã¨ãã¦ã¯ä»¥ä¸ã®[twitter:@toshi_k_datasci]ããããã®ã³ã¡ã³ããæ°ã«ãªã£ãã®ã§ããã @TJO_d
ãã®è¨äºã¯ä»¥ä¸ã®è¨äºã®ç¶ãã§ãã ååã®è¨äºã§ã¯æ®éã«ãã¸ã¹ãã£ãã¯å帰ã§å¾åã¹ã³ã¢ãæ±ããã®ã§ãããå¾åã¹ã³ã¢ã¨ããã®ã¯å ã¯ã¨è¨ãã°ãå ±å¤éã«åºã¥ãã¦ããããã®ç¾¤ã«å²ãä»ãããã確çå¤ãæ±ãããã®ããªã®ã§ããããã¨æãã°æ©æ¢°å¦ç¿åé¡å¨ã§ä»£æ¿ãã¦ãè¯ãããã§ããå®éã岩波DS3ã«ããã®ããã«æ¸ããã¦ãã¾ãã 岩波ãã¼ã¿ãµã¤ã¨ã³ã¹ Vol.3 岩波æ¸åºAmazon ã¨ãããã¨ã§ãååè¨äºã®CMæ¥è§¦ãã¼ã¿ã»ããã«å¯¾ãã¦ä»»æã®æ©æ¢°å¦ç¿åé¡å¨ãç¨ãã¦å¾åã¹ã³ã¢ãç®åºããæ³ã®ãå種å¹æææ¨ã®éããè¦ã¦ããããã¨æãã¾ãããªããã¼ã¿ã»ããã¯ååããå¼ãç¶ãdã¨ãããã¼ã¿ãã¬ã¼ã ã«å ¥ã£ã¦ããã¨ãã¾ããã¾ãAUCãæ±ããã«å½ãã£ã¦ã¯{ROCR}ããã±ã¼ã¸ãç¨ãã¦ãã¾ããä¸æºåã¨ãã¦ä»¥ä¸ã®ããã«ã¤ã³ããã¯ã¹ãç¨æãã¦ããã¾ãã > ivec1 <- d$cm_dummy # Treated group >
ä»åã¯ãååå°ããã触ããªãã£ããæ©æ¢°å¦ç¿ã¨å ææ¨è«ã®èååéã«ã¤ãã¦è§£èª¬ãã¦ããã¾ãã â WHYããªãæ©æ¢°å¦ç¿ã¨å ææ¨è«ãèåããã®ãçµè«ãåå¥ã®å æå¹æãææ¡ãããã¨ãæ±ãããã¦ããããã§ãã ä¾ãã°ããã¼ã±ãã£ã³ã°æ½çã®éãããäºç®ã®ä¸ã§ã ã»ã©ã®é¡§å®¢ã«ã¯ã¼ãã³ãæã¤ã®ãå¹æçãªã®ã ã»ã©ã®ç¨®é¡ã®ã¯ã¼ãã³ãæã¤ã¨é¡§å®¢ã¯ãã£ã¨ååãè²·ã£ã¦ãããã®ã ã»ãã®ã¯ã¼ãã³ã¯ã©ã®ãã£ãã«ã§è¨´æ±ããã¹ãã ã»ã¯ãã¾ãæ¬å½ã¯ã¯ã¼ãã³ã§ã¯ãªãæ°ååã®åºåã®æ¹ãã³ã¹ãããã©ã¼ãã³ã¹ãé«ãã®ã§ã¯ãªãã ãªã©ãç·åçã«èæ ®ããå ´å ã¾ãã¯ãæ²»çãããéã« ã»ã©ã®äººã«åªå çã«æ²»çãããã¹ãã ã»ãã®äººã«ã¯ã©ã®æ²»çæ³ãæãå¹æãããã®ã ãªã©åå¥ã®å æå¹æãæ±ããããå ´é¢ã¯å¤ã ããã¾ãã ã©ã®æ¹æ³ãã§ããéãå¤ãå®è¡ã§ããã°è¯ãã®ã§ããã ç©äºã«ã¯åºæ¬çã«ãªã½ã¼ã¹(äºç®ã»æéãªã©)ã®å¶ç´ãããããã éãããç¯
æ¦è¦Brodersen, Gallusser, Koehler, Remy, & Scott (2015) ã«ããææ¡ãã, R ã§å®è£ ãããæç³»åå ææ¨è«ãã¬ã¼ã ã¯ã¼ã¯, CausalImpact ã¯, ã·ã³ãã«ã§åããããã difference in differences (DID) ã®å ææ¨å®çè«ã«åºã¥ãã¦ãã, ãã¼ã±ãã£ã³ã°ã¤ãã³ããããããã¤ã³ãã¯ããè¨æ¸¬ãããã¼ã«ã¨ãã¦ç´¹ä»ããã¦ãã. ããã, DID ãé常ã«ã·ã³ãã«ã§ãããã®ã¯, å³æ ¼ãªä»®å®ãç½®ãã¦ããããã§ãã, å©ç¨ããéã«ã¯å¤ãã®æ³¨æãä¼´ã. ããã§ä»åã¯, ããçºå±çãªçè«ã«ã¤ãã¦èå¯ãããã¨ãåãæµãã¦ã¿ã. ãã¨ã¤ãã§ã« tsibble ããã±ã¼ã¸ã®ä½¿ãæ¹ã¨ããå°ãã ã触ãã¦ãã. ãã®åé¡ã¯ CausalImpact ã®èæ¡ä»¥åããããè°è«ã«ã¤ãã¦ãæ¯ãè¿ãå¿ è¦ãããã®ã§, ã¾ã Rubin (1974
ã¯ããã« ä»äºé¢ä¿ã§ Uplift Modeling ã«ã¤ãã¦èª¿ã¹ã¦ããããCATE (Conditional Average Treatment Effect) ã«ãã©ãçãã¾ããã CATE 㯠ATE (Average Treatment Effect) ãããç¹å¾´éã§æ¡ä»¶ä»ãããã®ã§ãATE ã"å¹³åçãª"å¦ç½®å¹æãç®åºãã¦ããã®ã«å¯¾ããå¹æã¯åå±æ§ (ç¹å¾´é) ã«ãã£ã¦å¤ããã¯ãã§ããã¨ããèãã®ãã¨ãéåè³ªæ§ (heterogeneity) ãç¹ãè¾¼ãã å½¢ã§ã®å¦ç½®å¹æãç®åºãã¦ãã¾ãã $$ATE:=E[Y(1)-Y(0)]$$ $$CATE:=E[Y(1)-Y(0)|X=x]$$ ããã§ã$Y(1)$ã$Y(0)$ ã¯æ½å¨ççµæå¤æ°ã$X=x$ ã¯ããç¹å¾´éã¨ãªãã¾ãã CATEãããªãã¡å人ãã»ã°ã¡ã³ãã¬ãã«ã§ã®å¦ç½®å¹æãæ¨å®ãããã¨ãã§ããã°ãå¦ç½®å¹æããã©ã¹ã®äººã«ã®ã¿ã
About CausalMLï CausalML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE), also known as Individual Treatment Effect (ITE), from experimental or observational data. Essentially, it estimate
ã¯ããã« CausalML ã¨ã¯ ç¾å¨ CausalML ã§æä¾ããã¦ãããã® CausalMLãã©ãããåéã§é©ç¨å¯è½ã Targeting Optimization Causal Impact Analysis Personalization ãããã« çµ±è¨çå ææ¨è«ã®é¢é£è¨äº ã¯ããã« æ¬è¨äºã¯ H. Chen et al. (2020), "CausalML: Python Package for Causal Machine Learning" ã®ç´¹ä»è¨äºã§ãã ä¸è¨ Chen et al.(2020) ã¯ç®ä¸ç 究åéã¨ãã¦ãã¢ãããæ©æ¢°å¦ç¿ãç¨ããå ææ¨è«ææ³ãæä¾ãã CausalML ã¨ããææ°ã® Python ããã±ã¼ã¸ã®ç´¹ä»ã«ãªã£ã¦ãã¾ãããã® CausalML 㯠Uber Technology ã®ã¡ã³ãã¼ãéçºããããã±ã¼ã¸ã§ãèè ãã¯å社ã®ã¡ã³ãã¼ã§ããUplif
ãUberå¾¹åºç 究ãã·ãªã¼ãºãä¹ ãæ¯ãã«æ´æ°ãã¾ãã [éå»ã®Uberå¾¹åºç 究ã·ãªã¼ãº] ã»Uberå¾¹åºç 究 -ãã¸ãã¹æ¦è¦ç·¨- ã»Uberå¾¹åºç 究 -UXæ¹åç·¨- ã»Uberå¾¹åºç 究 -ã²ã¼ããã£ã±ã¼ã·ã§ã³ã»è¡åç§å¦ç·¨- ã»Uberå¾¹åºç 究 -MaaSãæ¯ãããã¼ã¿ãµã¤ã¨ã³ã¹ç·¨- ã»Uberå¾¹åºç 究 -ãç¶ããMaaSãæ¯ãããã¼ã¿ãµã¤ã¨ã³ã¹ç·¨ ã¬ã³ã¡ã³ã- ä»åã¯Uberããã¼ã±ãã£ã³ã°é åã§ä½¿ç¨ããå ææ¨è«ããææ°ã®è«æãåºã«ç´¹ä»ãã¦ããã¾ãã å 容ã¨ãã¦ã¯å ææ¨è«ã®é åãªã®ã§ãåã åã¨ååã®å 容ããã®çºå±ç·¨ã¨ãªãã¾ãã ã»åã åï¼ãã¼ãã«çµæ¸å¦è³ã§ã注ç®ã®å ææ¨è«ã俯ç°ãã ã»ååï¼AIã§åå ã¨çµæãææ¡ãã ~æ©æ¢°å¦ç¿ã¨å ææ¨è«ã®èå Meta-Learner~ æãã³ã¹ãã®è¯ããã¼ã±ãã£ã³ã°æ¹æ³ãæ¢ãåã åã®æ稿ã§ç´¹ä»ãã"Uplift Modeling for Multipl
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}