é±æ«Kagglerã¨ãã¦avazuã®CTRäºæ¸¬ã³ã³ãã«åå ãã¾ãããKaggleã¯æ©æ¢°å¦ç¿çã®ISUCONã ã¨æã£ã¦ãããã°ããã§ããã³ã³ãèªä½ã¯çµãã£ã¦ããã®ã§ãlate submiteã§ãã¾ãæå³ã¯ãªãããããã¾ãããç·´ç¿ã§ããleaderboardä¸ã§ä¸ä½10%以å ã«è¡ããã®ã§ãããã¾ã§ã®è©¦è¡é¯èª¤ãã¡ã¢ãã¦ããã¾ããè¬ãã¦ãã¦(?)ãæã£ã¦ããã¬ãå¢ãããªãã¨ä¸ä½ã«è¡ããªããã®ãã¨æã£ã¦ãã¾ããããåºæ¬ã«å¿ å®ã«ããã°ãããããã®é ä½(ä¸ä½7.6%)ã«è¡ãã¾ããããä»ã®äººã®å·¥å¤«ãå£éè¦ããã¨ããæå³ã§ãç¾å ´ã®æ©æ¢°å¦ç¿ããå§ããã¨ã³ã¸ãã¢ã«ãè¦ãã§ãããã§ããã åå ã®åæ© ç®æ¨æ: é å¼µããããã«ä¸ä½10%以å ã«å ¥ã 試è¡é¯èª¤ Athenaã¨Redashã«ããæ¢ç´¢çãã¼ã¿è§£æ ãã³ããã¼ã¯ãã¾ãè¶ ãã ç·å½¢åé¡å¨ã§ã·ã³ãã«ãªç¹å¾´é æç³»åè¦ç´ ãå¿ãã¦ãã¦éå¦ç¿çºç ç¹å¾´éã¨ã³ã¸ãã¢ãªã³
ãããã¯ãè«æ "Best Practices for Scientific Computing" ããã³ "Good Enough Practices in Scientific Computing" ã«ã¤ãã¦ã TL;DR æ¨é¡ã®ä»¶ã«ã¤ãã¦ãæªã ã«çãã¯è¦ãã¦ããªãã®ã ãã©ãèªåã®ç¾ç¶ã¨ä»ã®äººã®ä¾ãæåã§æ®ãã¦ããã ãããã話ã§ããã¼ãã®æããã£ããã¼ï¼ãã¨ç¥ã£ãã¨ãã®è奮ã¯ãããã®ã§ãã¿ãªãããã£ã¨ãªã¼ãã³ã«ããã¾ãããã 大åãªã®ã¯ãã½ããã¦ã§ã¢éçºã¨åãè¦é ã§ãã¼ã¿ãµã¤ã¨ã³ã¹ã®ããã¸ã§ã¯ããæãã¦ãåæã¨è¨ãåã®âéçºâãè¡ãã¤ããã§ãã£ã¬ã¯ããªãæããã¨ã å¿ è¦ãªãã®ãªã¹ã ãã¦ããã¼ã¿ãµã¤ã¨ã³ã¹/æ©æ¢°å¦ç¿ããã¸ã§ã¯ãã®ä¸ã«ã¯ï¼çµé¨ä¸ãã±ã£ã¨æãæµ®ãã¶ã ãã§ãï¼æ¬¡ã®ãããªãã¡ã¤ã«ç¾¤ããã£ã¦ãåãã¡ã¯ããããè¯ãæãã«ç®¡çãããã ã½ã¼ã¹ã³ã¼ã å½¹å²ãããããããï¼ åå¦çï¼ã
æ¬è¨äºã§ã¯ãæ©æ¢°å¦ç¿ã³ã³ããªã©ã§ããè¦ãããå¾é ãã¼ã¹ãã£ã³ã°æ±ºå®æ¨(gradient boosting decision tree)ã説æãã¾ããå¾é ãã¼ã¹ãã£ã³ã°æ±ºå®æ¨ã¯ãMNISTãã¼ã¿ã«å¯¾ãã¦ããã¥ã¼ã©ã«ãããã®æé«ç²¾åº¦ã¨åçã®ç²¾åº¦ãåºããããã¾ãé«éãªå®è£ xgboostãªã©ã§æåãªææ³ã§ããã©ã¤ãã©ãªã使ç¨ãã¦ããæ¹ãå¤ãã¨æãã¾ãããæå¤ã¨ã©ã®ãããªæ§é ã«ãªã£ã¦ããããç¥ããªã人ãããããããã¾ããã ããã§ãæ¬è¨äºã§ã¯ã決å®æ¨ã¨ã¯ä½ããã¨ããã¨ããããå§ãã¦ãã¢ã³ãµã³ãã«å¦ç¿ãå¾é ãã¼ã¹ãã£ã³ã°æ±ºå®æ¨ã«ã¤ãã¦è¦ã¦ããã¾ãã 決å®æ¨ æ å ±å©å¾ ã¢ã³ãµã³ãã«å¦ç¿ ãã®ã³ã° ãã¼ã¹ãã£ã³ã° å¾é ãã¼ã¹ãã£ã³ã°æ±ºå®æ¨ åå復ã§ã®è¨ç·´ ã¢ãã«ã®è¤éæ§ æé©è§£ã®å°åº å®è£ ä¾ ã¾ã¨ã åè 決å®æ¨ 決å®æ¨(decision tree)ã¯ããã¼ã¿ã«å¯¾ãã¦ä¸é£ã®è³ªåãä¸ãããã¨ã«ãã£ã¦ãç®æ¨ã«
NMF(Non-negative Matrix Factorization)ã¨K-meansãç価ã§ããã¨ãã話ãèããã®ã§åèè«æãåºã«ã¡ã¢æ¸ãç¨åº¦ã«æ®ãã¦ããã¾ãã ãªããæ¬ç¨¿ã§ã¯ç°¡åãªå¯¾ç§°NMFã«ã¤ãã¦ããè¨è¿°ããªãã®ã§ããã以ä¸ãæ±ããæ¹ã¯åèè«æã辿ã£ã¦ä¸ããã #NMF(Non-negative Matrix Factorization) åæåãéè² ã§ãããã¼ã¿è¡å$X=[\boldsymbol{x}_1 , ..., \boldsymbol{x}_n] \in \mathbb{R}^{p \times n}$ã§ããã¨ãã(ç»åã®åãã¯ã»ã«å¤ããã¼ã¿æ°åã®è¡åã¨ãªã£ã¦ããç¶æ )ãNMFã§ã¯SVDãPCAçã¨ç°ãªãããã®è¡åãéè² è¡åã§è¿ä¼¼ãããè¦ããã«ä¸ã®ããã«ãªãã
ãã¦ãæ¹ãã¦ä»åã®ç®çã確èªãã¦ããã¨ãæ©æ¢°å¦ç¿ã使ã£ã¦æ±äº¬é½23åºã®ãè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã¨ãããã®ã§ããååã¾ã§ã®è¨äºã§ããè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã®ãã¼ã¿ãåéããåæã«ãããããããåå¦çãã¦ãã¾ããã www.analyze-world.com www.analyze-world.com ä»åã®è¨äºã§ã¯ãããããæ©æ¢°å¦ç¿ã使ã£ã¦åæãã¦ããã¾ããããååã¾ã§ã¯Pythonã使ã£ã¦ãã¾ãããããã®åæã§ã¯Rãç¨ãã¦ãã¾ãããªããã³ã¼ãã¯GitHubï¼https://github.com/ShoKosaka/Suumoï¼ã«ä¸ãã¦ããã¾ãã®ã§èå³ããæ¹ã¯åç §ãã ããã æåã«ããã¼ã¿ã®ä¸èº«ããã£ããè¦ã¦ããã¾ããå ·ä½çã«ã¯ãåæã®ãã¼ã«ãªããã¤ã³ããã°ã©ãã«ããªãããè³è²¸ç©ä»¶ã®ç¾ç¶ãå¤æ°å士ã®é¢ä¿æ§ãææ¡ãã¦ããã¾ãã ãã¼ã¿æ¢ç´¢ ã¾ãã23åºã®ä¸ã§ã©ããç©ä»¶æ°ãå¤ãã®ãã
é½å ã®äºæ¥ä¼ç¤¾ã§åæãWebãã¼ã±ãã£ã³ã°ã®ä»äºããã¦ãã¾ãã大å¦ã»å¤§å¦é¢ã§ã¯çµæ¸å¦ãéãã¦çµ±è¨è§£æãè¡ããªã©ãã¦ããã¾ãããä¼æ¥ã«å¤ãã¦ããã¯ãæ©æ¢°å¦ç¿ãããã¹ããã¤ãã³ã°ãã¯ãã¼ãªã³ã°æè¡ãªã©ã«é¢å¿ãæã£ã¦ãã¾ãã Twitterã¢ã«ã¦ã³ã Mr_Sakaue( SKUE ) GitHub èªæ¸ã¡ã¼ã¿ã¼ ã»ãããã®ãªã¹ã Kaggleã«ããã¦ã人ã«ãã£ã¦ã¯ã½ãªã¥ã¼ã·ã§ã³ãæ¸ãã¦ããã¦ãããã®ãããã¾ããç¹å¾´éã¨ã³ã¸ãã¢ãªã³ã°ãã¢ã«ã´ãªãºã ãªã©æ¥åã§ã®åèã«ãªãã ããã¨æãããã®ã§ãä»äºã§é¢ãããããªãã¼ã¿ã¨ãã観ç¹ãã4ã¤ã»ã©ã§ããäºä¾ãéãã¦ã¿ã¾ããããã®ãããªäºä¾ã®ã¾ã¨ã¾ã£ãæ¬ã¨ããã£ããããã®ã§ããã åºæ¬çã«åäºä¾ãã¨ã« ã»ç®ç ã»ã©ããªãã¼ã¿ã»ãã ã»ã©ããªç¹å¾´éã¨ã³ã¸ãã¢ãªã³ã° ã»ã©ããªã¢ã«ã´ãªãºã ã»ãªã³ã¯ ãè¨ãã¦ããã¾ãã Walmart Recruiting â S
æ¬è¨äºã®è¶£æ¨ è¦ãæãã®å帰ã¨è¦ãæãã®ç¸é¢ï¼æ¬ä¼¼ç¸é¢ï¼ã¯éãã¾ãã æç³»åï¼ã¨ããããã©ã³ãã ã¦ã©ã¼ã¯ããç³»å ã©ã³ãã ã¦ã©ã¼ã¯ - Wikipedia ï¼ã®å ´åãç¸é¢ä¿æ°ã¯æ¯è¼çé«ãå¤ã«ãªãããããã¾ãææãªç¸é¢ãåºãããã®ã§æ³¨æã ãã¨é«æ©æ´ä¸ã®è°è«ãæè·ãã話é¡ãæ··ãã£ã¦ãã¾ãããããã«ã¤ãã¦ã¯ãéèç·©åã¯ãã¿ç©ã¿ä¸çãéèç·©åè³æãæ¶è²»ç¨å¢ç¨å対ã - 廿TT ãåç §ãã¦ãã ããã ãæç³»åãç¸é¢ã ãæç³»åãç¸é¢ãã§ã°ã°ã£ãã¨ãã以ä¸ã®ãããªè¨äºãããããã. æç³»åãã¼ã¿ã®ç¸é¢ä¿æ°ã¯ãã¦ã«ãªããªã: ãã¥ã¼ã¹ã®ç¤¾ä¼ç§å¦çãªè£å´ ç¾æç¹ã§ã¯ Google æ¤ç´¢ã§ä¸ãã 6 çªç® R - æç³»åãã¼ã¿åæã®åå¿è ã«å¿ ãç¥ã£ã¦ãããããéè¦ãã¤ã³ãï¼å帰åæ ã»ç¸é¢é¢ä¿åæãè¡ãåã«å¿ ãããã¹ããã¨ï¼ãã¼ã¿ã®å½¢ã®ãã§ãã¯ã¨å¤å½¢ï¼ - Qiita ç¾æç¹ã§ã¯ Google æ¤ç´¢ã§ä¸ã
ã©ããããé»ãã¡ããã§ã¯ç«¶é¦¬æ å½ã«ãªãã¤ã¤ãããé·è°·å·ãªã§ã¼ã§ãã ååã¯åæµ·éã¾ã§åºå¼µåæãããããªã¢ã«ããã¹ã¿ãã®è¨äºããå±ããã¾ããããå°æ¥ã®å¤¢ã¯é¦¬ä¸»ã«ãªããã¨ã ãã¨ç«¶é¦¬ã¸ã®æã«ã¤ãã¦ã触ãããã¦ããã ãã¾ãããã馬å¸ã®æ¹ãåã¿ã¾ããé±æ«ã¯éè³ãä¸å¿ã«ãå¹³å ´ã®ã¬ã¼ã¹ã¾ã§æåºãè²·ããã¨ãå¤ãã§ãã ï¼Photo by Getty Imagesï¼ã1度ã ãä¸ä¸ä¸é¦¬å¸ãå½ã¦ããã¨ããããç涯åæ¯ã¯ééããªããã©ã¹ãªã®ã§ããããã®å¤§å½ããããªããã°ééããªãååçã¯100%ãä¸åã£ã¦ãããã¨ã¨æãã¾ããï¼åã ãã§ã¯ãªããããããå¤ãã®äººãåãç¾ç¶ã ã¨æãã¾ãâ¦â¦ï¼ æ®æ®µã¯AIï¼äººå·¥ç¥è½ï¼ãIoTãVRã®ãããªãã¯ããã¸ã¼å¨ãã®åæè¨äºãæ¸ããã¨ãå¤ããããã£ã¼ãã©ã¼ãã³ã°ã®ãããªæè¡ãå ã«ã競馬äºæ³ãããããã°ã©ã ãä½ããã¨ãã§ããã®ã§ã¯ï¼ãã¨å¤¢æ³ãããã¨ãä¸åº¦ãäºåº¦ã§ã¯ããã¾ãããITä¼æ¥
æ°è¦ä½æï¼2017å¹´05æ16æ¥ æçµæ´æ°ï¼2017å¹´05æ16æ¥ ããã§ã¯ãæç³»åãã¼ã¿ãæã«ããéã«ãã©ã®ãããªæé ã§å帰åæãããã¦ããã°ããã®ããããã¼ãã£ã¼ãã交ãã¦è§£èª¬ãã¾ãã æç³»åãã¼ã¿ã¯ç¹æ®ã§ãã¦ãæ®éã®å帰åæãè¡ãã¨ãpå¤ããããããªããæ£ããæ¤å®ãã§ããªããªããã¨ãããããã¾ãããããè¦ãããã®å帰ã¨å¼ã³ã¾ãã ã·ãã¥ã¬ã¼ã·ã§ã³ãéãã¦ãè¦ãããã®å帰ã¨ããç¾è±¡ã確èªããããã§ããããã«å¯¾å¿ããææ³ã¨ãã¦ã®åä½æ ¹æ¤å®ã»å ±ååæ¤å®ã»ä¸è¬åæå°äºä¹æ³(GLS)ã®åºæ¬çãªèãæ¹ã¨Rã§ã®å®è£ æ¹æ³ã«ã¤ãã¦èª¬æãã¾ãã ã½ã¼ã¹ã³ã¼ãã¯ã¾ã¨ãã¦ãã¡ãã«ç½®ãã¦ããã¾ãã ã¹ãã³ãµã¼ããªã³ã¯ ç®æ¬¡ æç³»åãã¼ã¿ã¸ã®å帰åæããã¼ãã£ã¼ã åä½æ ¹ã¨è¦ãããã®å帰 ãã¼ã¿ãã§ãã¯1ãåä½æ ¹æ¤å®ã¨ADFæ¤å® 解決çï¼ãå·®åç³»åã¸ã®å帰åæ å·®åç³»åã¸ã®å帰åæã®åé¡ç¹ ãã¼ã¿ãã§ãã¯ï¼ãå ±
ã¨ããã¼ã æ§ã ãªãã¼ã¿ãåæãæé©ä¾¡æ ¼ãæ¨å¥¨ãããã¨ã§ã競åä¾¡æ ¼ãã¤ãã³ãæ å ±ã®å¤åãã¿ã¤ã ãªã¼ã«åå¾ã§ããªããã¨ã«ããåããã¼ããé²ãã¾ã æ å ±åéã®å¹çå 競åä¾¡æ ¼/ã¤ãã³ãæ å ±/ã¯ãã³ããªã©ãä¾¡æ ¼è¨å®ã«å¿ è¦ãªæ å ±ãã¾ã¨ãã¦ç¢ºèªã§ãã¾ã å±äººåã®è§£æ¶ AIã«ããåæã¨æé©ä¾¡æ ¼ã®æ¨å¥¨ã§ãç¹å®ã®ç¤¾å¡ã«é ¼ããã¡ãªã¬ããã¥ã¼ããã¸ã¡ã³ãã®æ¨æºåãå®ç¾ãã¾ã è¦ããå ãã©ãã¯ããã¯ã¹ã«ãªããã¡ãªã¬ããã¥ã¼ããã¸ã¡ã³ãæ¥åãããã¼ã¿ã¨åæããã·ã¥ãã¼ãã§å¯è¦åãã¾ã 稼åç ä¾¡æ ¼ã«ããæ©ä¼æ失ãå°ãªãããªãã稼åçã®åä¸ã⽬æãã¾ã 人æè²æ ç°¡åãªæä½ã§ãçµé¨ã®æµ ãã¹ã¿ãããçæéã§æä½ã§ããå¤è½â¼¯åãä¿é²ãã¾ã
Exploratory Desktop provides a Simple and Easy-to-Use UI experience to access various data sources, clean and transform data, visualize and analyze data to gain deeper insights, communicate your discoveries with Notes, and monitor your business metrics with Dashboards. You can quickly extract data from various built-in data sources such as Redshift, BigQuery, PostgreSQL, MySQL, Oracle, SQL Server,
次å åæ¸ã¨ã¯ ãã¼ã¿ã®æ¬¡å åæ¸(Dimensionality reduction) + ãã¼ã¿ã®å¯è¦å(Data Visualization) PCA Principal Component Analysis(PCA) randomized PCA Online Robust Principal Component Analysis(OR-PCA) å¤æ§ä½å¦ç¿ t-Distributed Stochastic Neighbor Embedding(t-SNE) Multidimensional Scaling(MDS) Isomap Locally Linear Embedding (LLE) Laplacian Eigenmaps(LE) Semidefinite Embedding (SDE) Latent Dirichlet Allocation(LDA) Labeled LDA P
第7åç®ã®çè«è¨äºã§ã¯ç«¶é¦¬ãã©ã®ããã«æ©æ¢°å¦ç¿åé¡ã«è½ã¨ãè¾¼ãã®ããã¾ãå¦ç¿ããäºæ¸¬ã¢ãã«ã®æ§è½è©ä¾¡æ¹æ³ã«ã¤ãã¦èª¬æãã¦ããã¾ãã æ師ããå¦ç¿ã¨æ師ãªãå¦ç¿ æ©æ¢°å¦ç¿ã®åé¡ã¯**æ師ããå¦ç¿ï¼Supervised Learningï¼ã¨æ師ãªãå¦ç¿ï¼Unsupervised Learningï¼**ã®å¤§ãã2ã¤ã«åé¡ããã¾ã1ã æ師ããå¦ç¿ã¨ã¯ãç¹å¾´ãã¯ãã« $ \mathbf{x}_i $ ã«å¯¾ããæã¾ããå¿ç $ y_i $ ã®çµ $ {(\mathbf{x}_i, y_i) } $ ãè¨ç·´ãã¼ã¿ã¨ãã¦ä¸ãããããã¬ã¤ãã«ãã¦é¢ä¿ $ y = f(\mathbf{x}) $ ãå¦ç¿ããã¾ãããã®ããã«ãã¦å¾ãããäºæ¸¬ã¢ãã« $ f $ ã«æªç¥ã®ç¹å¾´ãã¯ãã«ãä¸ãããã¨ã§æªæ¥ã®ç¾è±¡ãäºæ¸¬ãã¾ããäºæ¸¬ã¢ãã« $ f $ ã¯ãç·å½¢ã¢ãã«ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã決å®æ¨ããµãã¼ããã¯ã¿ã¼ãã·ã³
by ERIC TASSONE, FARZAN ROHANI We were part of a team of data scientists in Search Infrastructure at Google that took on the task of developing robust and automatic large-scale time series forecasting for our organization. In this post, we recount how we approached the task, describing initial stakeholder needs, the business and engineering contexts in which the challenge arose, and theoretical an
è¤æ£® åä»ï¼NTTãã¼ã¿çµå¶ç 究æ ãã¸ã¿ã«ã¤ããã¼ã·ã§ã³ã³ã³ãµã«ãã£ã³ã°ã°ã«ã¼ã ã³ã³ãµã«ã¿ã³ã AIè¾²æ¥ã¨ã¯ããæé»ç¥ãã¨ãªã£ã¦ããç練農家ã®åªããè¾²æ¥æè¡ã»ãã¦ãã¦ããICTæè¡ãæ´»ç¨ãã¦ãå½¢å¼ç¥åããããã¨ã§ãä»ã®è¾²æ¥è ãæ°è¦åå ¥è ã«çæéã§ç¶æ¿ãããè¾²æ¥ãé«åº¦åããããããã¨ãç®çã¨ããæ°ããè¾²æ¥ã§ãã ICTãæ´»ç¨ããè¾²æ¥ã®é«åº¦åã«ã¤ãã¦ã¯ãå®æ°ãé£æºãã¦å¤æ¹é¢ã§æ¤è¨ãé²ãããã¦ãããAIè¾²æ¥ã¯ãã®ä¸ã§ããç練農家ã®è¾²æ¥æè¡ã»ãã¦ãã¦ã®ç¶æ¿ã¨ãã£ã人æè²æã«ãçç®ããåãçµã¿ã§ãã AIè¾²æ¥ã®ãAIãã¯ã人工ç¥è½ãæãè¨èã§ãããAIï¼Artificial Intelligenceãã§ã¯ãªããæ¥æ¬èªã§è¾²æ¥æ å ±ç§å¦ãæããAIï¼Agri Informaticsãã®ç¥ã§ãã è¾²æ¥æ å ±ç§å¦ã¨ã¯ãé«åº¦ãªè¾²ç§å¦ã®ç¥è¦ã¨ãæå 端ã®æ å ±ç§å¦ï¼ICTï¼ãçµã¿åããã¦ãè¾²æ¥ã®é«åº¦åãªã©ãå®ç¾ãã
ãã¤ã¯ãã½ãããããã¼ã¿ãµã¤ã¨ã³ã¹ã®æ¹æ³è«ãªã©ãã¾ã¨ãããTeam Data Science Processï¼TDSPï¼ããçºè¡¨ããã¼ã¿ãµã¤ã¨ã³ã¹ã®ããã®ã¬ã¤ãã©ã¤ã³ããã¼ã«ãGitHubã§å ¬éããã ç±³ãã¤ã¯ãã½ããã¯2016å¹´10æ11æ¥ï¼ç±³å½æéï¼ããã¼ã¿ãµã¤ã¨ã³ã¹ã«ãã¼ã ã§ååãã¦åãçµãããã®æ¹æ³è«ï¼äºä¾éãTeam Data Science Processï¼TDSPï¼ããçºè¡¨ãTDSPã®ã¬ã¤ãã©ã¤ã³ãããã¸ã§ã¯ãæ§é ããã¼ã«ãGitHubã§å ¬éããã TDSPã¯ããã¼ã¿ãµã¤ã¨ã³ã¹ã«ãããã³ã©ãã¬ã¼ã·ã§ã³ããã¼ã å¦ç¿ãæ¹åãããã¢ã¸ã£ã¤ã«ã§å復çãªæ¹æ³è«ãã以ä¸ã®è¦ç´ ã§æ§æãããã ãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ããµã¤ã¯ã«ã®å®ç¾© æ¨æºããã¸ã§ã¯ãæ§é åæ£å ±æåã®åæã¤ã³ãã© ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãç¨ã®ãã¼ã«ï¼ã¦ã¼ãã£ãªãã£ã¼ ãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ããµã¤ã¯ã« ãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ããµã¤ã¯ã«
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}