ãã¦ãæ¹ãã¦ä»åã®ç®çã確èªãã¦ããã¨ãæ©æ¢°å¦ç¿ã使ã£ã¦æ±äº¬é½23åºã®ãè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã¨ãããã®ã§ããååã¾ã§ã®è¨äºã§ããè²·ãå¾è³è²¸ç©ä»¶ãçºè¦ããããã®ãã¼ã¿ãåéããåæã«ãããããããåå¦çãã¦ãã¾ããã
ä»åã®è¨äºã§ã¯ãããããæ©æ¢°å¦ç¿ã使ã£ã¦åæãã¦ããã¾ããããååã¾ã§ã¯Pythonã使ã£ã¦ãã¾ãããããã®åæã§ã¯Rãç¨ãã¦ãã¾ãããªããã³ã¼ãã¯GitHubï¼https://github.com/ShoKosaka/Suumoï¼ã«ä¸ãã¦ããã¾ãã®ã§èå³ããæ¹ã¯åç §ãã ããã
æåã«ããã¼ã¿ã®ä¸èº«ããã£ããè¦ã¦ããã¾ããå ·ä½çã«ã¯ãåæã®ãã¼ã«ãªããã¤ã³ããã°ã©ãã«ããªãããè³è²¸ç©ä»¶ã®ç¾ç¶ãå¤æ°å士ã®é¢ä¿æ§ãææ¡ãã¦ããã¾ãã
ãã¼ã¿æ¢ç´¢
ã¾ãã23åºã®ä¸ã§ã©ããç©ä»¶æ°ãå¤ãã®ããè¦ã¦ããã¾ãã
ä¸çªã¯ä¸ç°è°·åºã§20,000件強ãæ並åºã練馬åºã¨ä½å® å°ã®ã¤ã¡ã¼ã¸ã®ããåºãç¶ãã¾ããéã«æä¸ä½ã¯ä¸¸ã®å ã®ããå代ç°åºã§ãããªãã»ã©ç´å¾æãããã¾ãã
èªç¶ãªçåã¨ãã¦ãç©ä»¶æ°ã¯äººå£ã¨ç¸é¢ãããããããªãããããã¨èãã¾ãã23åºå¥ã®äººå£ï¼https://mansionmarket-lab.com/tokyo-23city-ranking-populationï¼ãæåãã¦ãç¸é¢å³ããããããã¦ã¿ã¾ããã
ãã¼ã綺éºãªç¸é¢ã§ããã¼ãæ並åºã¯äººå£ã®å²ã«ç©ä»¶æ°ãå¤ãã®ã§ããã³ã·ã§ã³ãã¬ã³ã¬ã³ç«ã£ã¦äººãå¢ãããã¨ãã¦ããã®ããããã¾ããã 人ãåºã¦è¡ã£ã¦ç©ºã家ãå¢ãã¦ããã¨ããå¯è½æ§ãããã¾ãããããããåè ã§ããããã¡ãªã¿ã«ç¸é¢ä¿æ°ã¯0.91ã§ããã
ä»åä¸çªèå³ãããã®ã¯å®¶è³ã§ããååã®è¨äºã§ã触ãã¾ãããã管çè²»ã¯æ¯ææ¯æããã®ã§ãå®è³ªçã«ã¯å®¶è³ã¨èããããã®ã§ãä»åã¯è³æ+管çè²»ã家è³ã¨ãã¦ã¿ãªãã¦ãã¾ãã
23åºå¥ã«å®¶è³ãããã¯ã¹ããããããã®ãä¸å³ã§ãã
å·¦ã®ã»ãã«ããã¡ã£ããç®±ã®ä¸ã®ç¸¦ç·ãä¸å¤®å¤ã§ããè¦ã«ããã§ãããå¾ã§æ¡å¤§ãã¾ããâã¯å¤ãå¤ï¼ã¢ã¦ãã©ã¤ã¤ã¼ï¼ã§ãã¤ã¾ãããã¡ããã¡ãé«ãç©ä»¶ã表ãã¦ãã¾ããæãé«ãç©ä»¶ã ã¨ã350ä¸åãããã§ãããã念ã®ãã確èªãã¦ããã¾ãããããè³è²¸ç©ä»¶ã®æ¯æã®å®¶è³ã§ãã
ããã§çæãã¦ããã¹ããã¨ã¯ã家è³100ä¸å以ä¸ã®ç©ä»¶ãããããããããªãã¨ããç¹ã§ããããã¯å¾ã§ã¢ãã«ãä½ãã¨ãã«é¢ä¿ãã¦ãã¾ãã
å ã»ã©ã®ã°ã©ãã§ã¯ä¸å¤®å¤ã®å·®ãè¦ããªãã£ãã®ã§ã横軸ã®ä¸éã40ä¸åã§åããã¤ãã§ã«å¤ãå¤ãé表示ã«ãã¦è¦ã¾ãããã
港åºãä¸å¤®åºãå代ç°åºã¨ãé«ãããªã¨ãªã¢ãä¸ä½ã«åãé£ãã¦ãã¾ããé«ç´ã¨ãªã¢ã«ãªãã»ã©åæ£ã大ãããªã£ã¦ããã®ãè¦ã¦åãã¾ããã¾ããå°æ±åºã«ã¤ãã¦ã¯ãä¸å¤®å¤ã¯5çªç®ã«é«ãã§ããã20ä¸åè¶ ã®ç©ä»¶ã¯æ¯è¼çå°ãªããã¨ãããã¨ãªãããåããã¾ãã
åå¸ã®å½¢ãè¦ã¦ããã¾ããããå ¨é¨ããããããã¨è¦ã«ããã®ã§ãçãä¸ãããã®ä¸ç°è°·åºãä¸çªé«ã港åºã ä¸çªå®ãè飾åºã®3ã¤ããããããã¾ãã
ç©ä»¶ã®ç·æ°ãéãã®ã§å±±ã®é«ãã«å·®ãããã¾ãããè飾åºãä¸ç°è°·åºã港åºã¨é ã«å±±é ãå³ã«ã·ãããã¦ããã®ãè¦ãã¾ããä¸ã®å³ã§ãè¦ãããã«ã家è³ãé«ãåºã®æ¹ãåæ£ã大ãããã¨ãã°ã©ãå½¢ç¶ããåããã¾ãã
ã°ã©ãã ã¨ãã¾ãã¡å°ççé¢ä¿ãã¤ã¡ã¼ã¸ãã«ããã®ã§ããããã³ã°ãã¦è¦ã¦ã¿ããã¨ã«ãã¾ãã
港åºãä¸å¿ã«ãè·é¢ãé ãã»ã©å®¶è³ãä¸ãã£ã¦ããã®ãåããã¾ãããããªã®ç¥ã£ã¦ãããã¨ã¯è¨ããªãããã«ãã¾ãããããã®å³ãä½ãã®ã«3æé以ä¸ãããã£ã¦è¶ 大å¤ã§ãããä¸è¦å½ããåã®çµæã§ãããçµ±è¨åæã®çµæã¨ããã®ã¯æ¦ãã¦ãããããã®ã§ããå½ããåã®äºè±¡ãæ°åã§ç¢ºèªãããã¨ã«æ義ãããã¾ããã¾ãããããè¦ãã¨ã港åºããç©ä»¶ã¾ã§ã®è·é¢ãå¤æ°ã«ãã¦äºæ¸¬ã¢ãã«ãä½ããã¨ãã§ãããã§ãã
ä»ã«ã¯ãé¨å±æ°ã家è³ã決å®ããéè¦ãªè¦ç´ ã ã¨äºæ³ããã¾ãã家è³ã¨é¨å±æ°ã®é¢ä¿ãã¸ãã¿ã¼ããããï¼jitter plotï¼ã«è¡¨ãã¦ãã¾ãã
æå¤ã¨ã家è³ã200ä¸åãè¶ ãããããªè¶ é«ç´ãã³ã·ã§ã³ã¯é¨å±æ°ã2ã5åã¨å°ãªãã§ãããéç·ã®å帰ç´ç·ãè¦ãã¨ããã¯ãé¨å±æ°ã«å¿ãã¦å®¶è³ãä¸ãã£ã¦ããããã§ãã
10é¨å±ã®ç©ä»¶ã2ã¤ããã¾ãããä¸ã¤å®¶è³ãå®ãããç©ä»¶ãããã¾ãããã¡ãã£ã¨ç¢ºèªãã¦ããã¾ãããã
å ¥åãã¹ãï¼ï¼
æããã«ã1DKã§ããã¹ãã¨ããã10Kã«ãªã£ã¦ãã¾ãããªãã¨ç´20ä¸ä»¶ãã®ç©ä»¶ãã¼ã¿ããããããªå ¥åãã¹ãçºè¦ãããã¨ãã§ãã¾ãããããã¯ç´ æ´ãããã§ãããåæãåãåã«ãã¼ã¿æ¢ç´¢ããããã¨ã¯ããã®ãããªå ¥åãã¹ããããããçºè¦ãã¦é¤å¤ããããã«ã大åã§ãã
ãã®ä»ã家è³ã¨ã¯ç´æ¥é¢ä¿ããã¾ããããèå³æ·±ããã£ã¼ããããã¤ãç´¹ä»ãã¾ããã¾ãã¯ãæå¯ã3é§ ããã®è·é¢ã§ãã
Suumoããã§ã¯ãæ大ã§3ã¤ã¾ã§ãæå¯ãé§ ã¨ããããã®è·é¢ï¼å¾æ©ãåï¼ã表示ãã¦ãã¾ããã°ã©ããè¦ãã¨æããã«ãå¾æ©14åã«ãã¼ã¯ãããã¾ããç¾å®çã«ãå¾æ©14åã®å ´æã«ç©ä»¶ãå¤ããã¨ã¯èãã«ããã®ã§ãé§ è¿ç©ä»¶ã¨è¦ããããããã«å¾æ©15åå¼·ã®ã¨ãããå¾æ©14åã¨ãã¦ããã¨äºæ³ã§ãã¾ããæ©æ©ãã§14åã ã£ããã¨ãåããããªãã¼ã¯ãå¾æ©19åã«ãè¦ããã¾ããåºä¼ãç³»ãµã¤ãã«ã¯29æ³ã®å¥³æ§ã身é·170cmã®ç·æ§ãç°å¸¸ã«å¤ããã¨ã¨åãç¾è±¡ã§ããã
ç¯å¹´æ°ãè¦ã¦ããã¾ãã
ä¸å¤®å¤ãæãé«ãã®ã¯ä¸çºã®ã¤ã¡ã¼ã¸ã®å¼·ãæ±æ¸å·åºãè飾åºã墨ç°åºãæ±æ±åºãå°æ±åºã®ç¯å¹´æ°ãæµ ãã®ã¯æå¤ã§ããå°ççã«ã¯å¢¨ç°åºãä¸å¿ã«é£æ¥ããã¨ãªã¢ãªã®ã§ããããããããæ±äº¬ã¹ã«ã¤ããªã¼ã®å½±é¿ã§ä½å® ãå¢ãã¦ããã®ããããã¾ããã港åºãå代ç°åºãä¸å¤®åºã¯ãä¸è¨3åºãããä¸å¤®å¤ã¯é«ãã§ãããç ´ç·é¨åãè¦ãã¨ãç¯å¹´æ°ã30å¹´ãè¶ ããç©ä»¶ã¯ã»ã¨ãã©ç¡ãã®ã§ã家è³ãé«ãã¨ãªã¢ã ã¨ãããã¨ãèããã¨ãããããå¤ãç©ä»¶ã¯åãå£ããã¦ããã®ã§ããããã¾ãã家è³ã¨ã¯éããç¯å¹´æ°ã¯ä¸å¤®å¤ã大ããã»ã©åæ£ã大ããã¨ããããã§ã¯ãªãããã§ãã
äºæ¸¬ã¢ãã«ä½æ
ããç¨åº¦æ¦è¦³ãæ´ããã¨ããã§ãå®éã®åæã«ç§»ãã¾ããä»åã¯ä»¥ä¸ã®æµãã§é²ãã¾ãã
1. ãã¼ã¿ãå¦ç¿ãã¼ã¿ã¨ãã¹ããã¼ã¿ã«åãã
2. æ±ãã¢ãã«ã¯éå帰åæã¨ã©ã³ãã ãã©ã¬ã¹ã
3. å¦ç¿ãã¼ã¿ã使ã£ã¦äºæ¸¬ã¢ãã«ãä½æ
4. äºæ¸¬ã¢ãã«ã¨ãã¹ããã¼ã¿ã§äºæ¸¬
5. æ®å·®å¹³æ¹åã§æ§è½æ¯è¼ãã精度ã®é«ãã¢ãã«ã使ç¨
6. äºæ¸¬å®¶è³ã¨å®éã®å®¶è³ã®å·®ã大ããã»ã©ãè²·ãå¾ãªã¯ãï¼
å帰åé¡ã®ãããéå帰åæã¨ã©ã³ãã ãã©ã¬ã¹ãã®2ã¤ãã¢ãã«ã¨ãã¦è©¦ãã¾ãã精度ã®æ¯è¼ã®ããã«ããããããå¦ç¿ãã¼ã¿ã¨ãã¹ããã¼ã¿ã8:2ã®æ¯çã§åãã¦ããã¾ãã精度ã®å¤å®æ¹æ³ã«ã¯æ®å·®å¹³æ¹åãç¨ããå®éã®ãã¼ã¿ã¨ã®ãºã¬ãå°ããæ¹ãæ§è½ã®è¯ãã¢ãã«ã¨ãã¾ããå¦ç¿ãããäºæ¸¬ã¢ãã«ãå¼¾ãåºã家è³ã¯ããæ±äº¬23åºã®è³è²¸å¸å ´ã§ã¯ããã®æ¡ä»¶ã§ããã°ãã®ãããã®å®¶è³ã«ãªãã ãããã¨ããäºæ¸¬ã§ããããããããããå®éã®å®¶è³ãå®ããã°ããè²·ãå¾ç©ä»¶ã¨è¦ãªããã¨ãã§ããã¯ãã§ããäºæ¸¬å®¶è³ã¨å®éã®å®¶è³ã®å·®ç°ã«ã¯ãä»åèæ ®ã§ãã¦ããªãè¦å ã®å½±é¿ãå«ã¾ãã¾ãããå¸å ´ä¾¡æ ¼ã¨ã®å·®ç°ãã¤ã¾ãããè²·ãå¾æããå«ã¾ããã¯ãã§ããææ³ã¨ãã¦ã¯å°ãæªããã¨ãããããã¾ãããå®éã«æè¦å¤ã¨ãã¦ãè²·ãå¾ã¨æããç©ä»¶ãçãåºãããã°æåã¨ãã¾ããã¨ã«ãããã£ã¦ã¿ã¾ãããã
ã¾ãã¯éå帰åæã§ããä»åãå¿çå¤æ°ã¯å®¶è³ï¼è³æ+管çè²»ï¼ã説æå¤æ°ã¨ãã¦ä½¿ããããªã®ã¯åºãé¨å±æ°ãåºé¢ç©ãDKæç¡ãKæç¡ãLæç¡ãSæç¡ãç¯å¹´æ°ã建ç©é«ããéæ°ãæå¯é§ ããã®è·é¢ãã§ãããããã®ãã¡ã©ãã使ããã決ããããã«ãå¤æ°å士ã®ç¸é¢ä¿æ°ãè¦ã¦ããã¾ãã説æå¤æ°å士ã®ç¸é¢ãé«ãããã¨ãå¤éå ±ç·æ§ï¼multicollinearityï¼ã«ããåå帰ä¿æ°ãä¸å®å®ã«ãªããé©åã«æ±ãããã¾ããã
ä¸å³ãè¦ãã¨ãé¨å±æ°ï¼roomsï¼ã¨åºé¢ç©ï¼areaï¼ã®ç¸é¢ä¿æ°ã0.74ãDKæç¡ã¨Kæç¡ã-0.69ã建ç©é«ãï¼heightï¼ã¨éæ°ï¼orderï¼ã0.78ã¨é«ãç¸é¢ãè¦ãã¦ãã¾ããåºé¢ç©ã¯ä»ã®å¤æ°ã¨ãç¸é¢ãã¦ããã®ã§ãé¨å±æ°ãæ®ãã¾ããDKï¼ãã¤ãã³ã°ãããã³ï¼ãããé¨å±ã«ã¯é常Kï¼ãããã³ï¼ããªãããããã®äºã¤ã®ç¸é¢ãå¼·ãã®ã¯å½ç¶ã®çµæã§ããä»å¤æ°ã¨ã®ç¸é¢ä¿æ°ãè¦ã¦ãKæç¡ãæ®ãã¦DKæç¡ãåãé¤ãã¾ãã建ç©é«ãã¨éæ°ã¯ã©ã¡ããæ®ãã¦ãããæãããã¾ãããä»åã¯å»ºç©é«ããæ®ãã¾ãã
ãã®ããã«é¸ãã 説æå¤æ°ã§ã¾ãããéå帰åæã®çµæããã¡ãã§ãã
Call: lm(formula = rent_adm ~ ward + rooms + K + L + S + age + height + distance1, data = train) Residuals: Min 1Q Median 3Q Max -371992 -14867 -984 11853 3183274 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 50055.03 600.25 83.390 < 0.0000000000000002 *** wardä¸å¤®åº 5762.24 992.26 5.807 0.00000000636494220 *** wardä¸éåº -7093.45 714.54 -9.927 < 0.0000000000000002 *** wardååº -12368.37 766.18 -16.143 < 0.0000000000000002 *** wardå代ç°åº 40235.81 1403.77 28.663 < 0.0000000000000002 *** wardå°æ±åº -7512.34 951.72 -7.893 0.00000000000000296 *** wardåå·åº 5682.46 753.99 7.537 0.00000000000004851 *** ward大ç°åº -9853.70 637.80 -15.450 < 0.0000000000000002 *** wardæäº¬åº 3762.18 911.34 4.128 0.00003657751420970 *** wardæ°å®¿åº 7479.28 718.61 10.408 < 0.0000000000000002 *** wardæä¸¦åº -6740.65 602.93 -11.180 < 0.0000000000000002 *** wardæ¿æ©åº -22474.89 634.20 -35.438 < 0.0000000000000002 *** wardæ±æ¸å·åº -28949.53 680.59 -42.536 < 0.0000000000000002 *** wardæ±æ±åº -10232.66 738.05 -13.864 < 0.0000000000000002 *** wardæ¸è°·åº 49367.22 809.95 60.951 < 0.0000000000000002 *** wardæ¸¯åº 66886.99 854.63 78.264 < 0.0000000000000002 *** wardç®é»åº 24174.52 819.59 29.496 < 0.0000000000000002 *** wardç·´é¦¬åº -25470.31 606.30 -42.009 < 0.0000000000000002 *** wardèå·åº -16593.12 1072.54 -15.471 < 0.0000000000000002 *** wardèé£¾åº -31240.52 776.17 -40.250 < 0.0000000000000002 *** wardè±å³¶åº -5739.73 793.08 -7.237 0.00000000000045990 *** ward足ç«åº -34095.98 655.24 -52.036 < 0.0000000000000002 *** ward墨ç°åº -13580.54 852.49 -15.931 < 0.0000000000000002 *** rooms 42890.89 235.49 182.133 < 0.0000000000000002 *** K1 -1593.95 296.73 -5.372 0.00000007808390548 *** L1 50089.86 381.66 131.243 < 0.0000000000000002 *** S1 47491.88 1060.75 44.772 < 0.0000000000000002 *** age -909.23 9.79 -92.870 < 0.0000000000000002 *** height 2556.84 26.95 94.887 < 0.0000000000000002 *** distance1 -685.59 28.78 -23.823 < 0.0000000000000002 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 51490 on 165752 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.5162, Adjusted R-squared: 0.5161 F-statistic: 6098 on 29 and 165752 DF, p-value: < 0.00000000000000022
決å®ä¿æ°ï¼multiple R-squaredï¼ã0.516ãåå¤æ°ã®på¤ï¼p-valueï¼ãååã«å°ãããããªã®ã§ãè¯ãããã§ããåå帰ä¿æ°ï¼coefficientsï¼ãè¦ã¦ã¿ãã¨ãã©ã®åºã«ããããéè¦ãªããã§ããåãæ¡ä»¶ã§ãã£ã¦ãã港åºã¨è¶³ç«åºã§ã¯å®¶è³ã100,983åï¼66,887 + 34,096ï¼éãã¨ããçµæã«ãªã£ã¦ãã¾ããã¾ããé¨å±æ°ãè¦ãã¨ã1é¨å±å¢ãããã¨ã«å®¶è³ã42,890åé«ããªã£ã¦ãããã¨ãåããã¾ããç¯å¹´æ°ã¯1å¹´ãã¨ã«909.2åå®ããªã£ã¦ããã®ã§ãæ°ç¯ã¨ç¯10å¹´ã®ç©ä»¶ã§ã¯9,092åã®å®¶è³å·®ãããã¨è§£éã§ãã¾ããå ¨ä½çã«ã¯ãããã»ã©æè¦å¤ããããé¢ãã¦ããæãã¯ããªãã®ã§ããããã妥å½ãªçµæã ã¨è¨ãããã§ãã
è¯ãã¢ãã«ãã§ããããã§ãããå®å¿ã§ããããã§ã¯Q-Qããããã確èªãã¦ããã¾ãããã
ããããããããªï¼
ããã¯ãªãã¦é¢è¥¿å¼ãåºã¦ãã¾ãã¾ãããããã¯ãããã§ãããå帰åæã¯åæ£ãæ£è¦åå¸ãã¦ãããåä¸ã§ããã¨ããåæãç½®ãã¦ãããåæãæ£ãããã°ãã®Q-Qããããã¯ç´ç·ã«ãªãã¯ãã§ããããããããã§ã¯å¾åã§ãããããä¸æãã¦ããããã®åææ¡ä»¶ãæºãããã¦ããªããã¨ã示ãã¦ãã¾ãã
ã©ããããå ¨ã¦ã®å®¶è³ãä¸ã¤ã®å帰åæã¢ãã«ã§èª¬æããã®ã¯ç¡çãããããã§ããä¾ãã°ãã¼ã¿ã家è³50ä¸å以ä¸ã¨ä»¥ä¸ã«åãããªã©ãã¦ãå¥ã ã®ã¢ãã«ãä½ãå¿ è¦ãããã§ããããèãã¦ã¿ãã°ããããã家è³50ä¸å以ä¸ã®ç©ä»¶ã«ä½ã人ã®ééæè¦ã¯é常ã¨ã¯éãã¯ãã§ãç·å½¢ã§å帰ãããã¨ãã¦ããã¾ãããã¯ããããã¾ããã
ãã ããã¼ã¿ã®åå¸ãè¦ãã¨ã家è³50ä¸å以ä¸ã®ç©ä»¶æ°ã®æ¹ãå§åçã«å¤ããããè¶ é«ç´ç©ä»¶ã®å½±é¿ã¯ããã»ã©å¤§ãããªãã50ä¸å以ä¸ã®ç©ä»¶ã説æããããã®ã¢ãã«ã¨ãã¦ã¯ãããã使ãããã§ããããã庶æ°ã¢ãã«ã¨åä»ãã¾ãããã
次ã«ãã©ã³ãã ãã©ã¬ã¹ãã試ãã¾ããããããæ©æ¢°å¦ç¿ã£ã½ããªã£ã¦ãã¾ãããå ã»ã©ã®çµæãããç·å½¢å帰ã§ã¯ç¹ã«é«ç´ç©ä»¶ãäºæ¸¬ããã®ã«ç¡çãããããã ã£ãã®ã§ããã®è¾ºãã«æå¾ ãã¦å¦ç¿ãåãã¾ãã
ãã¦ãããã§ã¯å¦ç¿ããµãã¥ã£ã¦ããã©ãã確èªãã¦ããã¾ãããã
決å®æ¨ã®æ°ã¯ããã©ã«ãã®500ã§å¦ç¿ããã¾ãããã©ãããtrees = 100ãããã§ã¨ã©ã¼ãä¸å®ã«ãªã£ã¦ããããã§ããä»åå¦ç¿ã«16æéã»ã©ãããã¾ãããã次åããã¯trees = 100ã¨ããã°æçã§ãããã§ããã
ã©ã³ãã ãã©ã¬ã¹ãã®ããã¨ããã¯å¤æ°ã®éè¦åº¦ãè¦ããç¹ã§ãã以ä¸ã®å³ã§ãä¸ããé ã«éè¦åº¦ãé«ãå¤æ°ã並ãã§ãã¾ããã ããããéå帰åæã§è¦ãã®ã¨åãã§ããã¯ããåºï¼wardï¼ãé¨å±æ°ï¼roomsï¼ã大ããªè¦å ã®ããã§ãã
ã§ã¯ããã¹ããã¼ã¿ã«å¯¾ãã¦ãéå帰åæã§å¾ã庶æ°ã¢ãã«ã¨ã©ã³ãã ãã©ã¬ã¹ãã¢ãã«ã使ã£ã¦å®¶è³ãäºæ¸¬ãã¾ãããã
ä¸å³ããã¹ããã¼ã¿ã§ãã
ãã¹ããã¼ã¿ã¯ãå ¨ã¦ã®ãã¼ã¿ãã20%ãã©ã³ãã ã«æãåºãããã®ã§ãäºæ¸¬ã¢ãã«ã®å¦ç¿ã«ã¯ä½¿ã£ã¦ããªããã¼ã¿ã§ãã家è³ã®å®ãç©ä»¶ããindexãæ¯ãç´ãã¦ãã¦ãç©ä»¶æ°ã¯ç´42,000件ããã¾ããã»ã¨ãã©ã250,000å以ä¸ã§ãããä¸é¨1,000,000åã®ç©ä»¶ãããã¾ãããããäºæ¸¬ã§ãã¦ãããã©ãããè¦ã¦ã¿ã¾ãã
以ä¸ãéå帰ã¢ãã«ã®äºæ¸¬å¤ã¨ãã¹ããã¼ã¿ãæ¯è¼ããã°ã©ãã§ãã
ã¾ã大å¤ãã¯ãã¦ãã¾ãããããã¬ã大ããã§ãããä½ããã500,000å以ä¸ã®é«ç´ç©ä»¶ã«ã¤ãã¦ã¯å ¨ãäºæ¸¬ã§ãã¦ãã¾ããããããããããã¡ã ãã
éå帰ã¢ãã«ããã¾ãã¡ã ã£ããããå¤åã©ã³ãã ãã©ã¬ã¹ããããã¾ãè¯ããªããã ãããªããæ®å¿µã ãªããã§ãä¸å¿ç²¾åº¦ã確èªãã¦ããããã
ããããï¼
ããã¯ããã§ãããå ¨ä½çã«ãã¬ãéå帰ã«æ¯ã¹ã¦å°ããã§ãããé«ç´ãã³ã·ã§ã³ã®å®¶è³ãäºæ¸¬ãããã¨ãã§ãã¦ãã¾ãã家è³ãé«ããªãã«ã¤ããã¬ã大ãããªã£ã¦ããã®ãæ°ã«ãªãã¾ãããè´ãæ¹ããã¾ããã
ããã¨è¦ã§ãã©ã³ãã ãã©ã¬ã¹ãã®æ¹ãäºæ¸¬ç²¾åº¦ãé«ãããªæãã¯ãã¾ãããä¸å¿æ°åã§ç¢ºèªãã¦ããã¾ããããäºæ¸¬ç²¾åº¦ãé«ãæ¹ãããã¹ããã¼ã¿ã®å®éã®å®¶è³ã¨äºæ¸¬å®¶è³ã®æ®å·®å¹³æ¹åãå°ãããªãã¯ãã§ããçµæã¯ä»¥ä¸ã®éãããã¯ãã©ã³ãã ãã©ã¬ã¹ãã®æ¹ãæ§è½ãè¯ããã¨ãåããã¾ãã
ã¾ã çµããã¾ããã
ãè²·ãå¾ç©ä»¶æ¢ç´¢
ãããããæ¬çªã§ããããã¾ã§ã§ã家è³ã®äºæ¸¬ãããããã®ã¢ãã«ãã©ã³ãã ãã©ã¬ã¹ããç¨ãã¦ä½æãã¾ããã次ã¯ããã®ã¢ãã«ã使ã£ã¦ãå®éã®å®¶è³ãåãã£ã¦ããç©ä»¶å ¨ã¦ã«ã¤ãã¦å®¶è³ã®äºæ¸¬ããã¾ãããã®ã¢ãã«ã¯æ±äº¬é½23åºã®è³è²¸å¸å ´å ¨ä½ããä½æãããã®ãªã®ã§ãå®éã®å®¶è³ãäºæ¸¬å¤ãããå®ããã°ããè²·ãå¾ãã¨ãããã¨ã«ãªãã¯ãã§ããã¨ã«ããä»åã®ç®çã¯ãè²·ãå¾ç©ä»¶ãè¦ã¤ãããã¨ãªã®ã§ãå®éã«ãã£ã¦ã¿ã¦ããè²·ãå¾ã ãªã¨æããç©ä»¶ãæµ®ãã³ä¸ãã£ã¦æ¥ãã°æåã ã¨ãã¾ãã
以ä¸ã®è¡¨ããä¸è¨ã®ææ³ã§æ±ãããè²·ãå¾ç©ä»¶TOP30ã§ãããªãããã®ç©ä»¶ãã¼ã¿ã¯2017å¹´11æ6æ¥ã«åå¾ãã¦ããã¾ãã
ã©ã³ãã³ã° | ç©ä»¶ | ä½æ | éåã | å®¶è³ | äºæ¸¬å®¶è³ | å·®ç° | ç¯å¹´æ° | 建ç©é«ã | éæ° | åºé¢ç© | æå¯è·¯ç· | æå¯é§ | å¾æ©ãå |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ãã©ã³ãºä»£ã æ¨ | æ±äº¬é½æ¸è°·åºä»£ã æ¨ï¼ | 3LDK | 350,000 | 930,923 | 580,923 | 2 | 12 | 13 | 66.65 | JR山æç· | 代ã æ¨é§ | 1 |
2 | 笹å¡3ä¸ç®æ¸å»ºã¦ | æ±äº¬é½æ¸è°·åºç¬¹å¡ï¼ | 5LDK | 250,000 | 825,186 | 575,186 | 15 | 3 | 3 | 128.06 | 京çç· | 笹å¡é§ | 7 |
3 | JR山æç· ä»£ã æ¨é§ 14é建 ç¯2å¹´ | æ±äº¬é½æ¸è°·åºä»£ã æ¨ï¼ | 3LDK | 350,000 | 912,108 | 562,108 | 2 | 14 | 13 | 66.65 | JR山æç· | 代ã æ¨é§ | 1 |
4 | ãªã¢ã¼ãæµæ¯å¯¿ | æ±äº¬é½æ¸è°·åºæµæ¯å¯¿ï¼ | 4LDK | 205,000 | 608,359 | 403,359 | 9 | 2 | 2 | 72.6 | æ±äº¬ã¡ããæ¥æ¯è°·ç· | åºå°¾é§ | 7 |
5 | ä¸åæ¸å»º | æ±äº¬é½æ¸è°·åºä¸åï¼ | 4LDK | 500,000 | 900,987 | 400,987 | 6 | 3 | 1 | 118.02 | å°ç°æ¥ç· | æ±åæ²¢é§ | 5 |
6 | ä¸åæ¸å»º | æ±äº¬é½æ¸è°·åºä¸åï¼ | 4LDK | 500,000 | 900,987 | 400,987 | 6 | 3 | 1 | 118.02 | å°ç°æ¥ç· | æ±åæ²¢é§ | 5 |
7 | æ±äº¬ã¡ããå代ç°ç· 代ã æ¨ä¸åé§ 3é建 ç¯6å¹´ | æ±äº¬é½æ¸è°·åºä¸åï¼ | 4LDK | 500,000 | 900,987 | 400,987 | 6 | 3 | 1 | 118.02 | æ±äº¬ã¡ããå代ç°ç· | 代ã æ¨ä¸åé§ | 5 |
8 | ã©ã»ãã¥ã¼ã«ä¸ç° | æ±äº¬é½æ¸¯åºä¸ç°ï¼ | 4LDK | 1,075,000 | 1,443,515 | 368,515 | 12 | 43 | 40 | 175.92 | é½å¶ä¸ç°ç· | ä¸ç°é§ | 4 |
9 | ã»ã¶ã¼ã«ç½é | æ±äº¬é½æ¸¯åºç½éï¼ | 4LDK | 278,000 | 645,323 | 367,323 | 22 | 7 | 7 | 66.52 | æ±äº¬ã¡ããååç· | ç½éé«è¼ªé§ | 9 |
10 | JR山æç· æµæ¯å¯¿é§ 2é建 ç¯9å¹´ | æ±äº¬é½æ¸è°·åºæµæ¯å¯¿ï¼ | 4LDK | 205,000 | 560,713 | 355,713 | 9 | 2 | 2 | 72.6 | JR山æç· | æµæ¯å¯¿é§ | 10 |
11 | KDXã¬ã¸ãã³ã¹è¥¿å | æ±äº¬é½æ¸è°·åºè¥¿åï¼ | 3LDK | 252,000 | 571,991 | 319,991 | 14 | 6 | 2 | 80.41 | 京çæ°ç· | 幡ã¶è°·é§ | 6 |
12 | ãã¸ãã³ã¨ã¤ã | æ±äº¬é½æ¸è°·åºæ¬çºï¼ | 3LDK | 192,000 | 504,273 | 312,273 | 27 | 3 | 3 | 66.81 | 京çæ°ç· | åå°é§ | 6 |
13 | ã¯ãã©ã¹ã¿ã¯ã¼ã¬ã¸ãã³ã¹ | æ±äº¬é½å代ç°åºç¥ç°æ·¡è·¯çºï¼ | 4LDK | 650,000 | 959,967 | 309,967 | 5 | 41 | 37 | 108.75 | æ±äº¬ã¡ããå代ç°ç· | æ°å¾¡è¶ãæ°´é§ | 3 |
14 | 代ã æ¨ãã¼ã¯ããã¼ | æ±äº¬é½æ¸è°·åºä»£ã æ¨ï¼ | 4LDK | 1,100,000 | 1,389,275 | 289,275 | 14 | 4 | 2 | 238.55 | æ±äº¬ã¡ããå代ç°ç· | 代ã æ¨å ¬åé§ | 4 |
15 | æ±æ¥æ±æ¨ªç· é½ç«å¤§å¦é§ å°ä¸1å°ä¸2é建 ç¯5å¹´ | æ±äº¬é½ç®é»åºå «é²ï¼ | 2SLDK | 230,000 | 515,294 | 285,294 | 5 | 2 | 1 | 92.09 | æ±æ¥æ±æ¨ªç· | é½ç«å¤§å¦é§ | 10 |
16 | ã¬ãã·ã³ãã³ã¹ã¯ã¨ã¢ç½éé«è¼ª | æ±äº¬é½æ¸¯åºé«è¼ªï¼ | 3LDK | 361,000 | 641,261 | 280,261 | 12 | 22 | 17 | 71.51 | æ±äº¬ã¡ããååç· | ç½éé«è¼ªé§ | 1 |
17 | æ±äº¬ã¡ããååç· ç½éé«è¼ªé§ å°ä¸1å°ä¸22é建 ç¯12å¹´ | æ±äº¬é½æ¸¯åºé«è¼ªï¼ | 3LDK | 361,000 | 641,261 | 280,261 | 12 | 22 | 17 | 71.51 | æ±äº¬ã¡ããååç· | ç½éé«è¼ªé§ | 1 |
18 | ã¢ã¼ãã³ã幡ã¶è°· | æ±äº¬é½æ¸è°·åºå¹¡ã¶è°·ï¼ | 2SLDK | 250,000 | 528,211 | 278,211 | 12 | 4 | 3 | 80 | 京çæ°ç· | 幡ã¶è°·é§ | 2 |
19 | æ±äº¬ã¡ããååç· ç½éå°é§ 7é建 ç¯48å¹´ | æ±äº¬é½æ¸¯åºç½éï¼ | 3LDK | 150,000 | 427,715 | 277,715 | 48 | 7 | 2 | 50.36 | æ±äº¬ã¡ããååç· | ç½éå°é§ | 8 |
20 | ã¨ã¹ãã¦ã¹ | æ±äº¬é½æ¸è°·åºå¹¡ã¶è°·ï¼ | 3LDK | 210,000 | 482,218 | 272,218 | 6 | 3 | 1 | 71.37 | 京çæ°ç· | 幡ã¶è°·é§ | 7 |
21 | 京çæ°ç· 幡ã¶è°·é§ 3é建 ç¯14å¹´ | æ±äº¬é½æ¸è°·åºå¹¡ã¶è°·ï¼ | 1SLDK | 132,000 | 400,918 | 268,918 | 14 | 3 | 1 | 48.79 | 京çæ°ç· | 幡ã¶è°·é§ | 9 |
22 | ç®é»æ¬çºï¼ä¸ç®æ¸å»º | æ±äº¬é½ç®é»åºç®é»æ¬çºï¼ | 4LDK | 320,000 | 580,343 | 260,343 | 20 | 3 | 1 | 122.27 | æ±æ¥ç®é»ç· | æ¦èµå°å±±é§ | 8 |
23 | æ±äº¬ã¡ããå代ç°ç· 代ã æ¨å ¬åé§ 4é建 ç¯29å¹´ | æ±äº¬é½æ¸è°·åºå¯ã¶è°·ï¼ | 3LDK | 180,000 | 439,212 | 259,212 | 29 | 4 | 4 | 63.5 | æ±äº¬ã¡ããå代ç°ç· | 代ã æ¨å ¬åé§ | 5 |
24 | ãã¯ã¤ãã¿ã¯ã¼æµæ¾çº | æ±äº¬é½æ¸¯åºæµæ¾çºï¼ | 3LDK | 309,000 | 563,183 | 254,183 | 10 | 24 | 16 | 75.54 | JR山æç· | æµæ¾çºé§ | 3 |
25 | 幡ã¶è°·ï¼ä¸ç®ä¸æ¸å»º | æ±äº¬é½æ¸è°·åºå¹¡ã¶è°·ï¼ | 3SLDK | 300,000 | 549,728 | 249,728 | 9 | 3 | 1 | 103.64 | 京çæ°ç· | 幡ã¶è°·é§ | 9 |
26 | JR山æç· ç°çºé§ å°ä¸1å°ä¸14é建 ç¯15å¹´ | æ±äº¬é½æ¸¯åºèï¼ | 2SLDK | 220,000 | 462,107 | 242,107 | 15 | 14 | 2 | 56.84 | JR山æç· | ç°çºé§ | 9 |
27 | å°ç°æ¥ç· 代ã æ¨ä¸åé§ å¹³å± ç¯17å¹´ | æ±äº¬é½æ¸è°·åºè¥¿åï¼ | 3SLDK | 400,000 | 622,376 | 222,376 | 17 | 1 | -1 | 119.06 | å°ç°æ¥ç· | 代ã æ¨ä¸åé§ | 5 |
28 | ã¬ã¸ãã£ã¢è浦 | æ±äº¬é½æ¸¯åºèæµ¦ï¼ | 3LDK | 205,000 | 426,362 | 221,362 | 27 | 15 | 14 | 62.9 | JR山æç· | ç°çºé§ | 12 |
29 | æ±æ¥æ±æ¨ªç· é½ç«å¤§å¦é§ 3é建 ç¯14å¹´ | æ±äº¬é½ç®é»åºæ¿ã®æ¨åï¼ | 4LDK | 220,000 | 440,584 | 220,584 | 14 | 3 | 1 | 95.13 | æ±æ¥æ±æ¨ªç· | é½ç«å¤§å¦é§ | 7 |
30 | ã¡ã¾ã³ç½é | æ±äº¬é½æ¸¯åºç½éï¼ | 3LDK | 218,000 | 438,558 | 220,558 | 27 | 5 | 3 | 71.03 | æ±äº¬ã¡ããååç· | ç½éé«è¼ªé§ | 10 |
表ãçºãã¦ããã¾ãã¤ã¡ã¼ã¸ã§ããªãã®ã§ãããã¤ãå®éã«è¦ãã¦ã¿ã¾ãããã
ã¾ããæããè²·ãå¾ãªç©ä»¶ã«é¸ã°ããã®ã¯ããï¼
ãã©ã³ãºä»£ã æ¨ï¼
ã©ãã§ããããè²·ãå¾æããã¾ããï¼ä»£ã æ¨é§ 1åã3LDKãç¯2å¹´ã§35ä¸åããè²·ãå¾æããããããªãã§ããï¼ããã¾ããããã§ããããã35ä¸åãé«ããã¦ãå¾ãªã®ãã©ãããã¾ãã¡ãã³ã¨æ¥ã¾ããã
次ã¯ã©ãã§ããããã
第äºä½ï¼
ããã¯å®ãããããªãã§ããï¼ï¼
笹å¡é§ ï¼æ°å®¿ãã2é§ ï¼7åããªãã¨ä¸æ¸å»ºã¦5LDKã§25ä¸åã§ããï¼ç¯å¹´æ°ã15å¹´ã¨æªããªãæãã§ããã©ãã§ãããæ©æ¢°å¦ç¿ã®ãã¯ã¼ã©ãã§ããããããªç©ä»¶ãè¨ç®ã§æµ®ãã³ä¸ãã£ã¦ããã®ãããã§ãããã
ã§ãã¾ã é«ããæ¯æ25ä¸åã¯åºããªããããã¡ããæãå±ããããªç©ä»¶ã欲ãããããã§ãããã
ããã¾ãããããç©ä»¶ã
ããã§ã¯è¦ã¦ããã ãã¾ãããã第19ä½ã«ã©ã³ã¯ã¤ã³ããç©ä»¶ã¯ãã¡ãï¼
ç½éå°ï¼3LDKã§15ä¸åï¼
ããã¯å®ãã§ããããç¯48å¹´ã¨å°ãå¤ãã§ããããã®ç«å°ãéåãã§15ä¸åã¯ããªããè²·ãå¾ã§ãã15ä¸åã§ããã§ããªããã·ãã¬ãã¼ã¼ã§ãã
ææ³ã«æªããã¯æ®ãã¾ãããçµæçã«ã¯ãããªãã«ãè²·ãå¾æã®ããç©ä»¶ããã¡ãã¨æ½åºãããã®ã§ã¯ãªãã§ããããããã ãå ¨ä½çã«ã©ã³ã¯ã¤ã³ããç©ä»¶ãç´°ããè¦ã¦ããã¨ãä¸é¨ãã風åãå°ãå¤ããã ã£ãããããã®ãããã¾ãã®ã§ãä»å使ã£ãå¤æ°ã ãã§ã¯èª¬æã§ããªãç©ä»¶ä¾¡å¤ãããããã§ãã
ã¾ã¨ã
æ©æ¢°å¦ç¿ã使ã£ã¦æ±äº¬é½23åºã®ãè²·ãå¾è³è²¸ç©ä»¶ãæ¢ãã¦ã¿ã¾ãããå人çã«ã¯ãæå¾ éãã®çµæã«ãªã£ãã®ã§ã¯ãªããã¨æãã¾ããéä¸ãçµ±è¨çãªææ³ã§ããéå帰åæãããæ©æ¢°å¦ç¿ã®ææ³ã§ããã©ã³ãã ãã©ã¬ã¹ãã®æ¹ã精度ãé«ããã¨ã確èªãããã¨ãã§ãã¾ããã課é¡ã¨ãã¦ã¯ãé常ãç©ä»¶ã®åçãè¦ã¦æãããæ¸ æ½æããä»åã®ã¢ãã«ã§ã¯å å³ã§ãã¦ããªãã£ãç¹ãæãããã¾ããåçããã£ã¼ãã©ã¼ãã³ã°ã§å¦ç¿ããã¦æ¸ æ½æãæ°å¤åããã¨ããã¢ããã¼ããèãããã¾ãããããã¯å¤§å¤ãããªã®ã§ã¾ãæ°ãåããæã«ã§ãããã¾ãããã