Top > å¦è¡ï¼ç ç©¶ > AGIã¨è¶ ç¥è½ãããããæªæ¥ãäºè¦ï¼å OpenAIã¡ã³ãã¼ãæãè¡æã®ã·ããªãªãä¸çã¯éããªãæ°ä»ãããç¾æç¹ã§ãããçè§£ãã¦ããè ã¯æ°ç¾äººã®ã¿ã

å é£åºã¯21æ¥ãçæAIï¼äººå·¥ç¥è½ï¼ã¨ç¥çè²¡ç£æ¨©ä¿è·ã®ããæ¹ãè°è«ãããAIæä»£ã®ç¥çè²¡ç£æ¨©æ¤è¨ä¼ãããªã³ã©ã¤ã³ã§éããä¸éã¨ãã¾ã¨ãã®éª¨åæ¡ãæç¤ºãããè使¨©ä»¥å¤ã®ç¥è²¡æ¨©ã«ã¤ãã¦AIã«å¦ç¿ãããæ®µéã¯ååãæ¨©å©ä¾µå®³ã¯çºçããªãã¨ç¢ºèªãããæ¤è¨ä¼ã¯2023å¹´10æã«å§ã¾ãè¨6åç®ã¨ãªããããã¾ã§ã®è°è«ãæ¥çå£ä½ã¨åçåºããã®ãã¢ãªã³ã°ããã¨ã«éª¨åæ¡ãã¾ã¨ããã4æã«ãä¸éã¨ãã¾ã¨ããçå®ãã6
å æ¥ãè¬ç½ªï¼ã¨ã¯ã¬ã¼ã 対å¿ï¼ã®ããã«å颿±ã¨ãªã¢ã¾ã§è»ã§èµ´ãããæ°ã®ä¹ããªããå«ãªä»äºã ãåçºé²æ¢å¯¾çã¯ä¸å ¨ãæãã¦ããããå«å³ã®ã²ã¨ã¤ãµãã¤ã¯ãããããææªãªã®ã¯ãè¬ã£ã¦ããã®ã«è¬ã£ããæ¸ãã¨æããªã¨è¨ã£ã¦ãã人ãä½ããã¦ãæãããããã人ããããã¨ã§ããããããªã¨ãåã¯ãä¸éã¯ãªããã¯ã®ï¼£ï¼ã«åºã¦ããç·æ§ã¿ã¬ã³ãã®ããã«é¦ã縮ãã¦æéãéããã®ãå¾ ã¤ãã¨ããã§ããªãã ï¼ç¾¤é¦¬ç太ç°å¸ã®éã®é§ ã«ã¦ã太ç°å¸ã¯ãããã¹ã±ãã¼ã ã®ãã¼ã ã¿ã¦ã³ã ï¼ ï¼æéåã»ã©ã®éä¸ãAIæè¡ãçºéãããããããå«ãªä»äºããããªãã¦ãããªãã®ã ãããã¨èããã人éã®å¼±ç¹ãã«ãã¼ããå«ãªä»äºã軽æ¸ããããã«æè¡ã¯ãããAIæè¡ã§ãããä¾å¤ã§ã¯ãªããã ã¨ããã°è¬ç½ªã®ãããªå«ãªä»äºããçã£å ã«AIã«æãã¦ããã¹ãã ãããããä»äºã¨ããã®ã¯ç¸æããã£ã¦æç«ãããã®ã§ããããè¬ç½ªãåããå´ã®ç«å ´ã«ãªã£ã¦ã¿ãã¨ãAIã®è¬ç½ª
åºå ¸ï¼å®å ±ï¼â»ã¯ãªãã¯orã¿ããããã¨æ¡å¤§ã§ãã¾ãï¼æ¥æ¬ã代表ããã¦ãã³ã¼ã³ä¼æ¥ã§ãèªåé転é¢é£æè¡ã®éçºãææããAIï¼äººå·¥ç¥è½ï¼éçºä¼æ¥ã®æ ªå¼ä¼ç¤¾Preferred Networksï¼æ¬ç¤¾ï¼æ±äº¬é½å代ç°åºï¼ä»£è¡¨åç· å½¹CEOï¼è¥¿å·å¾¹ï¼ãå社ã®ç¬¬9ææ±ºç®å ¬åï¼2022å¹´2æã2023å¹´1æï¼ãããã®ã»ã©å®å ±ã«æ²è¼ãããã 第9æã¯å£²ä¸é«ã76å5,500ä¸åãå½æç´æå¤±ã¯30å6,600ä¸åã§ãã£ãã ããã¨åãã¿ã¤ãã³ã°ã§ãåç¤¾ã¯æ°è¨åå²ã«ãããçæAIäºæ¥ã«é¢ããæ°åä¼ç¤¾ãPreferred Elementsãã2023å¹´11æ1æ¥ã«è¨ç«ãããã¨ãçºè¡¨ããã2021å¹´11æã«ã¯ãèªå¾ç§»åããããäºæ¥ãææãããPreferred Roboticsããæ°è¨åå²ã«ããè¨ç«ãã¦ããã éå»ã®æ°è¨åå²ã®çµç·¯ããããããåç¤¾ã®æ±ºç®ãéå»ã®æ±ºç®ã¨åç´ã«æ¯è¼ã¯ãã«ããããåèã®ããã«è¨è¼ããã¨ã第7
AIã使ã£ã¦ä½ãããã³ã³ãã³ããæ¬¡ã ã«çã¿åºããã¦ããä¸ã俳åªã鳿¥½å®¶ãªã©ã§ä½ãæ¥çå£ä½ããè¸è½å¾äºè ã®æ´»åãæ¨©å©ã®ä¿è·ãæ±ãããAIãã©ã®ãããªãã¼ã¿ãå ã«ãã¦çæããã®ãé示ãã¹ãããªã©ã¨ããè¦ææ¸ãå½ã«æåºãã¾ããã è¦ææ¸ãæåºããã®ã¯ã俳åªã鳿¥½å®¶ãªã©ã®è¸è½å¾äºè ã§ä½ãæ¥æ¬è¸è½å¾äºè åä¼ã§ã8æ¥ã«ä¼è¦ãéãã¦æããã«ãã¾ããã ä¼è¦ã§ã¯ãAIãåµä½æ´»åã«å¯¾ãã¦åã¼ãå½±é¿ã«ã¤ãã¦ãæ ç»ã鳿¥½ãç¾è¡ãªã©ãæåè¸è¡ã®ååéããã®æè¦ãç´¹ä»ããã声åªããã¯ãæ°æéã§ãã¹ã¦ã®é³åã声è²ãã¹ãã£ã³ããã¦ãããããã®è¡¨ç¾ãæ¼æãã§ããããã«åæããããã¨ããç¾è¡å®¶ããã¯ãèªåã®ä½åãç¥ããªãéã«AIã«åãè¾¼ã¾ããåå©ç¨ããã¦ãããã¨ã«æ¤ããæãããã¢ã¼ãã£ã¹ãã®è使¨©ã侵害ãããç¡æ³å°å¸¯ãä½ã£ã¦ãã¾ãã¨å±æ§ãã¦ãããã¨ãã£ããæ¸å¿µã®å£°ãä¸ãã£ã¦ãããã¨ã説æããã¾ããã ã¾ãããªã³ã©ã¤ã³ã§ä¼è¦
Innovative Techï¼ ãã®ã³ã¼ãã¼ã§ã¯ããã¯ããã¸ã¼ã®ææ°ç ç©¶ãç´¹ä»ããWebã¡ãã£ã¢ãSeamlessãã主宰ããå±±ä¸è£æ¯ æ°ãå·çãæ°è¦æ§ã®é«ãç§å¦è«æã山䏿°ãããã¯ã¢ãããã解説ãããTwitter: ï¼ shiropen2 ç±³Googleãç±³DeepMindãã¹ã¤ã¹ã®ETH Zurichãç±³ããªã³ã¹ãã³å¤§å¦ãç±³UC Berkeleyã«æå±ããç ç©¶è ããçºè¡¨ããè«æãExtracting Training Data from Diffusion Modelsãã¯ãããã¹ãããç»åãçæããæ¡æ£ã¢ãã«ãå¦ç¿ãã¼ã¿ã¨ã»ã¼åãç»åãçæãã¦ãããã¨ãå®è¨¼ããç ç©¶å ±åã§ããã ããã¯å¦ç¿ãã¼ã¿ã®åç»åãæ¡æ£ã¢ãã«ãè¨æ¶ããçææã«ã»ã¼åä¸ãåºåãã¦ãããã¨ã«ãªããå人ãç¹å®ã§ããé¡åçã忍ç»é²ããããã´ãå«ã¾ãã¦ãããããä»åã®çµæã¯ãã©ã¤ãã·ã¼ãè使¨©ã®åé¡ãæ·±ã絡ããã¨ã«ãªã
æ ªå¼ä¼ç¤¾ã¬ã¢ã¾ã³ã»ãã¼ã«ãã£ã³ã°ã¹(æ¬ç¤¾ï¼æ±äº¬é½æ°å®¿åºã代表åç· å½¹ï¼æ¸¡é ç)ã¯ä¸çæé«ã¬ãã«ã®é«ç²¾åº¦æ¥æ¬èªé³å£°èªèã¢ãã«ããã³ä¸çæå¤§19,000æéã®æ¥æ¬èªé³å£°ã³ã¼ãã¹â»ãReazonSpeechããå ¬éãããã¾ããã 2023å¹´1æ18æ¥ æ ªå¼ä¼ç¤¾ã¬ã¢ã¾ã³ã»ãã¼ã«ãã£ã³ã°ã¹(æ¬ç¤¾ï¼æ±äº¬é½æ°å®¿åºã代表åç· å½¹ï¼æ¸¡é ç)ã¯ä¸çæé«ã¬ãã«ã®é«ç²¾åº¦æ¥æ¬èªé³å£°èªèã¢ãã«ããã³ä¸çæå¤§19,000æéã®æ¥æ¬èªé³å£°ã³ã¼ãã¹â»ãReazonSpeechããå ¬éãããã¾ããã â»é³å£°ã³ã¼ãã¹: é³å£°ãã¼ã¿ã¨ããã¹ããã¼ã¿ãçºè©±åä½ã§å¯¾å¿ä»ãã¦éãããã®ãé³å£°èªèã¢ãã«ã使ããææã¨ãã¦ä½¿ç¨ããããã®è¦æ¨¡ã¨å質ãé³å£°èªèã®ç²¾åº¦ã大ããå·¦å³ããã â»2ãReazonSpeechããç¨ããæåèµ·ãããµã¼ãã¹ãããã¸ã§ã¯ãwebãµã¤ãã«ã¦å®éã«è©¦ããã¨ãã§ãã¾ãã ããã¸ã§ã¯ãwebãµã¤ãï¼https://
ã¨ããã¦ã @tokoroten ãåé¡ãééã£ã¦ãããä»äºã«å¤æããã ãåé¡ããééã£ã¦ã¯ãããªãé¨åãåãåºãã ã¨ããä»äºã¨ãã¦æ®ãã¾ãã 2022-08-10 00:55:14 ãªãªã¯ã¸ã© @RvBLMFfePYpVT7c @tokoroten ããããä»®ã«AIãæããçµµã®ä¸ã«ãããã£ã©ã¯ã¿ã¼ã§ã°ããºä½ãããï¼ã£ã¦æã£ããæ¨©å©è ã¯èª°ã«ãªã£ã¦ãæãä¸ããããæ°è¦çµµã¯ã©ããã£ã¦ä½ã£ã¦ããã£ã©ã¯ã¿ã¼èª¬æãè¨å®ã¯èª°ãããã®ï¼ã£ã¦æãããªã 人éã®çµµå¸«ãå®å ¨ã«è·ã失ãã¨ãAIãä½ã£ãçµµãå¶å¾¡ã§ããªããä½ããAIã®å¦ç¿ãé æã¡ã«ãªãã 2022-08-10 08:39:31
èªç¤¾ã®ãã£ã¼ãã©ã¼ãã³ã°ï¼æ·±å±¤å¦ç¿ï¼ãã¬ã¼ã ã¯ã¼ã¯ã§ãããChainerï¼ãã§ã¤ãã¼ï¼ãã®æ°æ©è½éçºãçµäºããç±³ãã§ã¤ã¹ããã¯ãéçºãããPyTorchï¼ãã¤ãã¼ãï¼ãã«ç§»è¡ããã¨çºè¡¨ãã人工ç¥è½ï¼AIï¼éçºã®Preferred Networksï¼ããªãã¡ã¼ãã»ãããã¯ã¼ã¯ã¹=PFNãæ±äº¬ã»å代ç°ï¼ããã®æ±ºæã®èæ¯ãæ¢ã£ããChaineréçºã®è²¬ä»»è ã§ããPFNã®ç§èæåå·è¡å½¹å¡ã¯ããPyTo
2015 å¹´ 4 æ 12 æ¥ã« Chainer ã®æåã®ã³ã¼ããã³ããããã¦ããï¼ããã 4 å¹´åã¨å°ããçµã¡ã¾ããï¼ã¯ããã®ã¯ããã¯è»½ãæ°æã¡ã§æ¸ãã¯ãããã³ã¼ãã§ãããï¼ä»ã§ã¯ä¸ç·ç´ã®ç ç©¶ãç«æ´¾ã«æ¯ããã¾ã§ã«ãªãã¾ããï¼æ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã®ä¸çã彿ã¨ã¯æ§å¤ãããã¦ï¼å½æã¯ TensorFlow ã PyTorch ããªãã£ãããã§ãããï¼æ¬å½ã«å¤ããã¾ããï¼ï¼æãã°é ãã«ãããã®ã§ãï¼ ä»æ¥ï¼PFN ã¯ç¤¾å ã®ç ç©¶éçºã«ç¨ãã主ãªãã¬ã¼ã ã¯ã¼ã¯ã PyTorch ã«ç§»è¡ããã¨çºè¡¨ãã¾ããï¼ä¼ç¤¾ã«ã¨ã£ã¦ããã¡ããã§ããï¼æ¥åã¨ãã¦ã¯ãã® 4 å¹´åï¼Chainer ä¸çã§ãã£ã¦ããèªåã«ã¨ã£ã¦ã¯ç¹ã«ï¼å¤§ããªè»¢æç¹ã§ãï¼ ã¾ãçç´ãªææ³ã¨ãã¦ï¼Chainer ã®éçºã¯æ¬å½ã«æ¥½ããã£ãã§ãï¼æ¸ãã¯ãããé ã¯ï¼æ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ç«¶äºã®çã£åªä¸ã§ï¼Theano ã®ä¸ã«ä¹ã£ãããã¬ã¼ã ã¯ã¼
shinshinohara @ShinShinohara AIãä»äºã奪ãã失æ¥è ã§æº¢ããããæä»£ãæ¥ããåµé æ§ã®ãªã人éã¯ä½è³éã«çãããªããã°ãªããªã・・・ã¨è¨ããã¦ããããããããã¯ãAIãã¹ã±ã¼ãã´ã¼ãã«ãã¦ãã ãã§ã¯ãªãããéç¨ã奪ããå¤ãã®äººã ããåå ¥ã奪ã£ã¦ãããã®ã®æ£ä½ã¯ãéãã®ã§ã¯ãªããã 2019-07-13 21:49:44 shinshinohara @ShinShinohara ç£æ¥é©å½ã§ã¯ãæ©æ¢°ãçºéã大éçç£ãå¯è½ã«ãªããæå·¥æ¥ã§çãã¦ãã人ãã¡ããä»äºã奪ã£ããæ©æ¢°ãæã¿ãæã¡å£ãã©ããã¤ãéåã¨ããã®ãèµ·ããããäºæ ã¯æ¹åããªãã£ãã5ã6æã®åä¾ã14æéå´åãå¼·ããããå¹³å寿å½ã¯é常ã«ä½ãã£ããçãããæ»ã¬ãã®ã®ãªã®ãªã®çæ´»ãå¼·ããããã 2019-07-13 21:53:07
ãã£ã¼ãã©ã¼ãã³ã°ãç¨ãã¦éæ¢ç»ããç©ä½ãåãé¤ãã¦è£æ£ããæè¡ãªã©ã¯æ¢ã«å®ç¾ãã¦ãã¾ãããGoogleã¯ããã«æ åã®ã奥è¡ããã«çç®ãããã¨ã§ãã ã¼ãã¼ãã人ãç©ãæ¶ããããå®éã«ã¯åå¨ããªããªãã¸ã§ã¯ããåæããæè¡ã®éçºãé²ãã¦ãã¾ãã Google AI Blog: Moving Camera, Moving People: A Deep Learning Approach to Depth Prediction https://ai.googleblog.com/2019/05/moving-camera-moving-people-deep.html å®éã«ãã£ã¼ãã©ã¼ãã³ã°ãç¨ãã¦æ åãå¦çãã¦ããæ§åãããã®ä»çµã¿ã«ã¤ãã¦ã®è§£èª¬ã¯ä»¥ä¸ã®ã ã¼ãã¼ã§è¦ããã¨ãã§ãã¾ãã Learning Depths of Moving People by Watching Frozen Pe
ãã¯ã³ã´äººå·¥ç¥è½ç ç©¶æ éæã®ãç¥ããï¼ å½ç ç©¶æã¯2014å¹´10æã«ãããããã¯ã³ã´äººå·¥ç¥è½ç ç©¶æãçºè¶³ã®ãç¥ãã 以æ¥ããæ¬¡ä¸ä»£ã¸ã®è´ãç©ã¨ãªã人工ç¥è½ã®åµé ãããã¸ã§ã³ã«æ²ããè³åæ±ç¨äººå·¥ç¥è½ãç®æãå 端çãªäººå·¥ç¥è½ã«ããããç ç©¶éçºãé²ãã¦åãã¾ãã(åèè¨äºï¼ C-NET, BizZine ç )ãããããªãããã®åº¦ã2019å¹´3ææ«æ¥ããã¡ã¾ãã¦ï¼å¹´åã®æ´»åã®æ´å²ãçµãã¾ããã ããã¾ã§ã®ãã¯ã³ã´ç¤¾å ã®åé¨ç½²ã®çæ§ãããã³ç ç©¶ãéçºãååããã ããç ç©¶è ã»ã¨ã³ã¸ãã¢ã»å¦çã®çæ§ãããã¦ä½ãããè¨ç«å½åããç¾å¨ã«è³ãã¾ã§å½ç ç©¶æã®ã¡ã³ãã¨ãã¦æ´»èºããã ããæ§ã ãªçæ§ã®ãå°½åã«ãããã³ãã¥ããã£ãå½¢æãã人æãè²æããããã¦ç ç©¶ææãçã¿åºããã¨ã§ãè³åæ±ç¨äººå·¥ç¥è½ã®éçºã«ãããç¤ãç¯ãã¦ããã¨èãã¦ããã¾ãã ç§ã¨ãã¾ãã¦ã¯ãããããç¤ãæ´»ããã¤ã¤ãä»å¾ã¯ããã«åºãæãæºããB
ã大伿¥ã¯æéã奪ã£ã¦ããæèããªãããAIãã³ãã£ã¼ãæ¬é³ã§æ¿è«ãâ丸æãä¾é ¼âã®æ¬¡ãªã課é¡ï¼ããããã®AIã®è©±ããããï¼AIãã³ãã£ã¼å¯¾è«ç·¨ï¼ï¼1/4 ãã¼ã¸ï¼ 2018å¹´ããããã人工ç¥è½ï¼AIï¼ã«å¯¾ããéå°ãªæå¾ ã¨çãä¸ãããå¾ã ã«è½ã¡çãã¦ããå°è±¡ã§ãã 調æ»ä¼ç¤¾ã®ã¬ã¼ããã¼ã¸ã£ãã³ã¯ã人工ç¥è½ã¯æµè¡æããå¹»æ» æã«å·®ãæãã£ã¦ããã¨ããè¦è§£ã18å¹´10æã«çºè¡¨ãã¾ãããAIéçºã®ç¾å ´ã§æ´»èºãã¦ãã人ã®ä¸ã«ã¯ããããå¾åãååãã«æãããããããè½ã¡çãã¦è©±ãã§ããç°å¢ã«ãªã£ããã¨è¸ããªã§ä¸ããã¦ãã人ããã¾ãã ãã®ãã¡ã®1人ããAIãã³ãã£ã¼ Shannon Lab代表åç· å½¹ã®ç°ä¸æ½¤ããã§ããã¢ã¡ãªã«ã®å¤§å¦ã§æ°å¦ãç ç©¶ãã¦ããç°ä¸ããã¯ãç¾å¨äººå·¥ç¥è½ã®å¯¾è©±ã¨ã³ã¸ã³ãé³å£°èªèã¨ã³ã¸ã³ãéçºããAIãã³ãã£ã¼ã®ç«å ´ã§ä¼æ¥ã®AIå°å ¥ãæ¯æ´ãã¦ãã¾ãã ç°ä¸ããã¯ã2016ï½17å¹´ãã
By gscruton ã¢ã¡ãªã«ãä¸å½ãä¸å¿ã«éçºãé²ãèªåé転è»ã¯ãå®å ¨ãªé転ãå¯è½ã«ãããã¨ã«å ããæ©æ¢°å¦ç¿ãæ´»ç¨ãããã¨ã§éè·¯ã®æ¸æ»ã軽æ¸ã§ãããããããªãã¨ããç ç©¶çµæãçºè¡¨ããã¾ããã Watch just a few self-driving cars stop traffic jams | Science | AAAS https://www.sciencemag.org/news/2018/11/watch-just-few-self-driving-cars-stop-traffic-jams èªåè»ãé転ãã¦ããã¨ãã³ãã³äº¤éæ¸æ»ã«åºããããã¨ãããã¾ãããäºæ ãå·¥äºãªã©ãåå ã§èµ·ãã£ã¦ããæ¸æ»ããã䏿¹ã§ãã¾ã£ããåå ãããããã«ããã¤ã®éã«ãæ¸æ»ãçµãã£ã¦ããã©ä½ã§æ¸æ»ãã¦ãã®ï¼ï¼ãã¨æã£ã¦ãã¾ã䏿è°ãªæ¸æ»ã«ééãããã¨ããã人ãå¤ãã¯ãã交éå·¥å¦ã®ç ç©¶ã«ãããå
ï¼æã«ã¢ã¡ãªã«ã§å ¬éãããããã¤ã±ã«ã»ã ã¼ã¢ç£ç£ã®æ ç»ãè¯æ°119ãã®ä¸ã§ãããã¹ã»ãã¤ãã®ããã©ã¼ãæ¼èª¬ããæ åã«ãã©ã³ã大統é ã®é³å£°ãéãããã¡ãã£ã¨ãããã¨ããå ´é¢ãããã¾ãããæããã«ããã§ã¤ã¯ï¼ãã¤é ï¼ãã ã¨ããããã®ã§ãããæè¿ã¯ãã¤é ã«ã»ã¨ãã©æ°ä»ããªãã精巧ãªããã§ã¤ã¯åç»ãã®ç ç©¶ãè¡ããã¦ãã¾ããä¾ãã°å¤§çµ±é ã®å½ã®æ¼èª¬åç»ãä½ããã¦æ¡æ£ããããã©ã®ãããªæ··ä¹±ãèµ·ããããä¸çã®ã¸ã£ã¼ããªã¹ããã¡ãã屿©æãåããã¦ãã¾ããï¼ããµã³ã¼ã«ã¹æ¯å±è¨è 飯ç°é¦ç¹ï¼ ï¼æã«ãããµã¹å·ã®ãªã¼ã¹ãã£ã³ã§éããããONAï¼ãªã³ã©ã¤ã³ãã¥ã¼ã¹ä¼è°ï¼ä¸»å¬ã®ãã¸ã£ã¼ããªã¹ããã¡ã®å½éä¼è°ã«ã¯ãããã¯ä¼æ¥ã®ä»£è¡¨ãå«ãç´2500人ãåå ãã¦ããã§ã¤ã¯ãã¥ã¼ã¹å¯¾çãªã©ã«ã¤ãã¦è°è«ã交ããã¾ããã ã¡ãã£ã¢ã¯ã彿°ã®æµããèªåã«é½åã®æªããã¥ã¼ã¹ã¯ããã§ã¤ã¯ãã¥ã¼ã¹ãã¨å¼ã¶ãã©ã³ã大統é ã®è¨åã¯ãå¤ãã®
ç½µåå°å¥³ã¯ãã³ãã¥ãã±ã¼ã·ã§ã³ã«ç¹åããAIãPROJECT Samanthaãï¼ããã¸ã§ã¯ãã»ãµãã³ãµï¼ã®åãçµã¿ã®1ã¤ã ã9æ19æ¥ã«é½å ã§éãããã¤ãã³ããAI MEETUP 2ãã§ãããã¸ã§ã¯ãã«æºããã½ãã¼ã»ãã¥ã¼ã¸ãã¯ã¨ã³ã¿ãã¤ã³ã¡ã³ãï¼SMEï¼ã®äºä¸æ¦å²ãããããã£ã©ã¯ã¿ã¼AIã®éçºã§å¾ãç¥è¦ãä»å¾ã®å±æãèªã£ãã ããã£ã©ã¯ã¿ã¼ã¯æå¼·ã®ã¦ã¼ã¶ã¼ã¤ã³ã¿ãã§ã¼ã¹ã ç½µåå°å¥³ã¯ãpixivãªã©ã§æ´»èºããã¤ã©ã¹ãã¬ã¼ã¿ã¼ã»mebaeããã®ä½åãç½µåå°å¥³ãã«ç»å ´ãããã£ã©ã¯ã¿ã¼ãç´ åï¼ãã¨ãï¼ã¨ãã£ãããæ¥½ããããµã¼ãã¹ãã¦ã¼ã¶ã¼ã®çºè¨ã«å¯¾ãããæã£ã±ããã声ããããããããï¼ããã¨ããç®ã§ã¸ãã¸ãè¦ããããããããã®ã¯ãºããªã©ã¨ããã¤è¨èãæµ´ã³ããã 対話åAIã®ã¢ããã¼ãã«ã¯ãï¼1ï¼ããã¤ã¬ã©ãï¼ãã¨ããå ¥åæããããã¤ã¬ãã¨ãã£ãåèªãæ½åºãããï¼2ï¼ããææ´ãããå粧室ããªã©
ââç±³å½ãä¸å½ã«æ¯ã¹ãæ¥æ¬ã¯äººå·¥ç¥è½éçºã§é ãã¦ããã¨ãããã¦ãã¾ãããªãæ¥æ¬ã¯ãã®ç«¶äºã«è² ãã¦ããã®ã§ããããã æ¾å°¾ãããããã¯ãæ¥æ¬ãã¤ã³ã¿ã¼ãããã§ä¸çã«è² ããçç±ã¨ä¼¼ã¦ããã®ã§ã¯ãªãã§ããããã ä¸ã¤ã¯ãæè¡ã®åãå ¥ãæ¹ãé常ã«é ãç¹ã1990年代å¾åã«ã¯è¥è ãã¡ããããããã¯ãããã®æä»£ã ï¼ãã¨è¨ã£ã¦ããã®ã«ãä¸ã®å¹´ä»£ã®äººãã¡ãçè§£ãã¾ããã§ããããä¿¡ç¨ã§ããªããããªã¿ã¯ã使ãã ããã¨å¦å®ããæ°ãããã®ãçã¾ããªãã£ãã ä»ãããã¯åãã§ããä¸å£ã«AIã人工ç¥è½ã¨ãã£ã¦ããæ°ããæè¡ã®ä¸å¿ã§ãããã£ã¼ãã©ã¼ãã³ã°ã«å¯¾ãã¦ã徿¥ã®åéã¸ã®ãã ãããå¼·ããæå¦æãå¼·ã人ã大å¢ãã¾ãã ããä¸ã¤ã¯ãè¥ã人ãåãæã£ã¦ããªãç¹ãè¥ã人ãèªåã®è£éã§èªå¨ã«åãããããªç¤¾ä¼ç°å¢ã«ãªã£ã¦ãã¾ãããå½¼ãã«è£éãä¸ãã¦ä½ãããããã°çµ¶å¯¾ã«ä½ãèµ·ãããã§ããã©ããããããããªãããå¤åãèµ·ãããªã
ããããð @yuk381 ãã³ãã®äººå·¥ç¥è½ãã天ä¸ä¸åãã®çæ¿ã¨ãé²å ¥ç¦æ¢ãã®æ¨èãè¦åããããªãã®ã§ãè»ç¨®ã«ãã£ã¦ã¯å¤©ä¸ä¸åã«è¿ã¥ãã ãã§äººéã«é²å ¥ç¦æ¢ã®è¦åãåºãã¦ãã¾ãä»¶ãåã ãã¨æã£ã¦ããæ¬å½ã«é²å ¥ç¦æ¢ã«ãªã£ã¦ç¬ã£ã pic.twitter.com/3Qk1UVIxox 2018-09-12 20:24:01
人éãçè§£ãã人工ç¥è½ãããã«å ã¸ã æ å ±å¦çå¦ã§å¤å¤§ãªåç¸¾ãæ®ããé·å°¾çæ°ã¨ ãããããã¯æ±å¤§ã«å ¥ããããããã¸ã§ã¯ãã§äººéã®è½åã«æ³¨ç®ããããã«ãªã£ã å½ç«æ å ±å¦ç ç©¶æã®æ°äºç´åææãã AIæè¡ã®çºå±ã«ã¯ããããä½ãå¿ è¦ã«ãªãã®ããå¾¹åºè¨è«ãã¾ããã 人éã®ç¥è½ãæ¯ãããã®æ°äºãç§ããããããã¯æ±å¤§ã«å ¥ããããã¨ããããã¸ã§ã¯ã(â»1)ãå§ããã¨ãã«äººå·¥ç¥è½å¦ãç¹ã«è¨èªå¦çã®æ¹é¢ãããä½ã§ãããªå½¹ã«ç«ããªããã¨ãããã®ããã¨ããæ¹å¤çãªãæè¦ãåãã¾ããããããªä¸ãé·å°¾å çããããã¯ä»ããã®ã¯ãªããªãé¢ç½ããããã¨ãè¨èªå¦çå¦ä¼ã®è¨å¿µå¤§ä¼ãªã©ã«ç§ãè¬å¸«ã¨ãã¦å¼ãã§ãã ãã£ãã®ãå°è±¡ã«æ®ã£ã¦ãã¾ãã é·å°¾ãã§ãããããã4ï½5å¹´ã®ãã¡ã«æ±ããããããã«ãªã£ãããããã¡ãã£ã¨ãã£ããé¢ç½ãã¨ããã¾ã§å±éããã®ã§ã¯ãã¨æã£ã¦ããã®ã§ããããæ®å¿µã§ãã æ°äºããããã¾ã ããã¸ã§ã¯ãã¯ããã¦ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}