çæ¯æ°åã®å
çæ¯æ°å
çæ¯æ°åã®ä¸è¬é ã¯ãåé ããå ¬æ¯ãã¨ãã¦ã
\begin{equation} a_n=r^na_0 \end{equation}
ã¨è¡¨ããã
(ä¸ããããåé ãã ã£ããã§å²ã£ã¦ãä½ã£ã¦ãããããåé ã ã¨ã®ææ°ãã«ãªã£ã¦é¢åãªã®ã§)
Â
çæ¯æ°åã®å
ãã®æ°åãããã¾ã§è¶³ããå¤ã¯ããã¤ã«ãªããï¼ãçç¥ã®ãªãå½¢ã§è¡¨ãããã
Â
ã¾ãåç´ã«åãåã£ã¦ã¿ãã¨ã
\begin{equation}
\displaystyle \sum_{k=m}^nr^ka_0=r^ma_0+r^{m+1}a_0+r^{m+2}a_0+\cdots +r^{n-1}a_0+r^na_0 \tag{1}
\end{equation}
ããã ãã§ã¯è¯ãåãããªãã
Â
å¼(1)ã®ä¸¡è¾ºãåããã
\begin{equation}
\displaystyle r\sum_{k=m}^nr^ka_0=r^{m+1}a_0+r^{m+2}a_0+r^{m+3}a_0+\cdots +r^{n}a_0+r^{n+1}a_0 \tag{2}
\end{equation}
Â
å¼(1)ããå¼(2)ã辺ã å¼ãã¨ãã»ã¨ãã©ã®é ãæã¡æ¶ãåãã
\begin{eqnarray}
\displaystyle \require{cancel}
\sum_{k=m}^nr^ka_0&=&r^ma_0+&\cancel{r^{m+1}a_0}+\cancel{r^{m+2}a_0}+\cancel{\cdots} +\cancel{r^{n-1}a_0}+\cancel{r^na_0}\\
-\bigg) \quad r\sum_{k=m}^nr^ka_0&=& &\cancel{r^{m+1}a_0}+\cancel{r^{m+2}a_0}+\cancel{\cdots} +\cancel{r^{n-1}a_0}+\cancel{r^{n}a_0}&+r^{n+1}a_0\\
\hline
(1-r)\sum_{k=m}^nr^ka_0&=&r^ma_0& &-r^{n+1}a_0
\end{eqnarray}
Â
å³è¾ºãã§ãããã
\begin{equation}(1-r)\sum_{k=m}^nr^ka_0 = a_0(r^m-r^{n+1}) \end{equation}
Â
ã¨ãã¦ã両辺ãã§å²ãã*1
\begin{equation}
\underline{\sum_{k=m}^nr^ka_0=\frac{a_0(r^m-r^{n+1})}{1-r}}
\end{equation}
çæ¯æ°åã®åã®å¼ãæ±ããããã
Â
ç¹ã«ã®æãããªãã¡åé ããã®åã®æã
\begin{equation}
\underline{\sum_{k=0}^nr^ka_0=\frac{a_0(1-r^{n+1})}{1-r}}
\end{equation}
çæ¯æ°åã®åé ããã®åã®å¼ãæ±ããããã
*1:ã§ããã°ãå ¬æ¯1ãªã®ã§ããã®åã¯åç´ã«è¶³ãåãããé ã®æ°ãã«ããããã®ã§ããã