çå·®æ°åã®å
çå·®æ°å
çå·®æ°åã®ä¸è¬é
ã¯ããåé
ããå
¬å·®ã¨ãã¦ã
\begin{equation}
a_n=a_0+nd
\end{equation}
ã®å½¢ã§è¡¨ããã
(ä¸ããããåé ãã ã£ãããå¼ãã¦ãä½ã£ã¦ãããããåé ã ã¨ã®ä¿æ°ãã«ãªã£ã¦é¢åãªã®ã§)
Â
çå·®æ°åã®å
ãã®æ°åãããã¾ã§è¶³ããå¤ã¯ããã¤ã«ãªããï¼ãçç¥ã®ãªãå½¢ã§è¡¨ãããã
ã¾ãåç´ã«åãåã£ã¦ã¿ãã¨ã
\begin{equation}
\displaystyle \sum_{k=m}^n(a_0+kd)=a_0+md+\left\{a_0+(m+1)d \right\} +Â \left\{a_0+(m+2)d \right\} + \cdots +\left\{a_0+(n-1)d \right\}+a_0+nd \tag{1}
\end{equation}
ããã ãã§ã¯è¯ãåãããªãã
Â
åãéã®é çªã§æ¸ãã¦ã¿ãã
\begin{equation}
\displaystyle \sum_{k=m}^n(a_0+kd)=a_0+nd +\left\{a_0+(n-1)d \right\} +\left\{a_0+(n-2)d \right\} +\cdots + \left\{a_0+(m+1)d \right\}+a_0+md \tag{2}
\end{equation}
Â
å¼(1)ã¨å¼(2)ã辺ã 足ãã¨ãããæãã«æã¡æ¶ãåãã
\begin{equation}
\displaystyle \require{cancel}
2\sum_{k=m}^n(a_0+kd) = 2a_0+(m+n)d +\left\{2a_0+(m\cancel{+1}+n \cancel{-1})d \right\} + \left\{ 2a_0+(m\cancel{+2}+n\cancel{-2})d \right\} + \cdots + \left\{2a_0 +( n\cancel{-1} +m\cancel{+1})d \right\}+\left\{ 2a_0+(n+m)d \right\}
\end{equation}
Â
æ´çãã¦æ¸ãã
\begin{equation}
\displaystyle
2\sum_{k=m}^n(a_0+kd)Â = \overbrace{\left\{2a_0+(m+n)d \right\}+\left\{2a_0+(m+n)d \right\}Â + \left\{ 2a_0+(m+n)d \right\}Â + \cdots +Â \left\{2a_0 +(m +n)d \right\}+\left\{ 2a_0+(m+n)d \right\}}^{n-m+1} \tag{3}
\end{equation}Â
Â
å¼(3)ãæãç®ã§è¡¨ããããã§å³è¾ºãããçç¥ããªããªãã
\begin{equation}
\displaystyle
2\sum_{k=m}^n(a_0+kd)Â =Â (n-m+1) \left\{ 2a_0+ (m+n)d \right\}
\end{equation}Â
Â
å³è¾ºã®å³å´ã®ã«ãã³å ãå±éããã
\begin{equation}
\displaystyle
2\sum_{k=m}^n(a_0+kd)Â =Â (n-m+1) \left\{ (a_0+md)+(a_0+nd) \right\}
\end{equation}Â
Â
å³è¾ºã®å³å´ã«ãã³å ãã¨ã§è¡¨ãã
\begin{equation}
\displaystyle
2\sum_{k=m}^n(a_0+kd)Â =Â (n-m+1) (a_m+a_n)
\end{equation}Â Â
Â
両辺ã2ã§å²ãã
\begin{equation}
\displaystyle
\underline{\sum_{k=m}^n(a_0+kd)Â = \frac{(n-m+1) (a_m+a_n)}{2}}
\end{equation}Â Â
çå·®ç´æ°ã®å¼ãå°ãããã
Â
å³å½¢çã«è¡¨ãã¨ãã®ããã«ãªããã¨ãããÂ
\begin{equation}
\displaystyle
\sum_{k=0}^6(3+2k)Â = \frac{(6-0+1) (15+3)}{2}=63
\end{equation}Â Â
ã¯ä¸å³ã®éããã¹ã®æ°ã¨ä¸è´ãã¦ãããããªãã¡ãçå·®æ°åã®åã¯é·æ¹å½¢ã®é¢ç©ãåºãã¦ãã2åããè¨ç®ã¨ç価ã§ããã