import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
Skip to the content. æ©æ¢°å¦ç¿ã®ç 究è ãç®æã人㸠æ©æ¢°å¦ç¿ã®ç 究ãè¡ãããã«ã¯ãããã°ã©ãã³ã°ãæ°å¦ãªã©ã®åæç¥èããããµã¼ãã¤ã®æ¹æ³ãè³æã»è«æã®ä½ææ¹æ³ã¾ã§ãå¹ åºãç¥èãå¿ è¦ã«ãªãã¾ããæ¬ã¬ãã¸ããªã¯ãå¦çãæ°ç¤¾ä¼äººã対象ã«ãæ©æ¢°å¦ç¿ã®ç 究ãè¡ãã«ããã£ã¦å¿ è¦ã«ãªãç¥èããããããå¦ã¶ããã®æ¸ç±ãWebãµã¤ããã¾ã¨ãããã®ã§ãã ç®æ¬¡ ããã°ã©ãã³ã°ã®æºå Pythonãåå¼·ããã åãããããã³ã¼ããæ¸ããããã«ãªãã æ°å¦ã®æºå æé©åæ°å¦ãå¦ã¼ã åºæ¬çãªã¢ã«ã´ãªãºã ã¨ãã®å®è·µ æ©æ¢°å¦ç¿ã®å ¨ä½åãå¦ã¼ã åºæ¬çãªã¢ã«ã´ãªãºã ãå¦ã¼ã 深層å¦ç¿ã®åºç¤ãå¦ã¼ã scikit-learnãPyTorchã®ãã¥ã¼ããªã¢ã«ããã£ã¦ã¿ãã ãµã¼ãã¤ã®æ¹æ³ å½éä¼è°è«æãèªãã Google Scholarãæ´»ç¨ããã arXivããã§ãã¯ããã ã¹ã©ã¤ãã®ä½ãæ¹ è«æã®
ã¤ã³ãããAmazonã®ãã®ååããã§ãã¯ãã人ã¯ãã®ååããã§ãã¯ãã¦ãã¾ããããYouTubeã®ããªãã¸ã®ãããããããTwitterã®ããããã¦ã¼ã¶ã¼ããªã©ã®ã¬ã³ã¡ã³ãæ©è½ã¯å¤ãã®Webãµã¼ãã¹ã«çµã¿è¾¼ã¾ãã¦ããã¾ãããã®ã¬ã³ã¡ã³ãã«ãã£ã¦ãã¤ãã¤ãååãããããè²·ã£ã¦ãã¾ã£ãããå¤é ãã¾ã§åç»ãè¦ã¦ãã¾ã£ãçµé¨ã¯ãªãã§ããããã ãã®è¨äºã§ã¯ãã¬ã³ã¡ã³ãã·ã¹ãã ã®è£å´ã¯ã©ã®ãããªä»çµã¿ã«ãªã£ã¦ããã®ããããããã¬ã³ã¡ã³ãã¨ã¯ã©ããããã®ãªã®ããå ·ä½ä¾ã交ããªãã俯ç°ã§ããã°ã¨æãã¾ããã¬ã³ã¡ã³ãã·ã¹ãã ã®ã¢ã«ã´ãªãºã ã®è©³ç´°ã«ã¯è§¦ããããã¸ãã¹ã«ããã¦ã©ã®ãããªå½¢ã§å®è£ ããã¦ãããã«ãã©ã¼ã«ã¹ãã¦ãã¾ãããããä¸ã«å ¬éããã¦ããã¬ã³ã¡ã³ãã«é¢ããã¹ã©ã¤ããè¨äºãè«æã®ãªã³ã¯ãã¾ã¨ãã¾ããã®ã§ãã¢ã«ã´ãªãºã ã®è©³ç´°ãªã©ã¯ãªã³ã¯å ã®è¨äºã§ã確èªãã ããã 対象ã®èªè ã¯ãèªç¤¾ã®ãµã¼ãã¹ã«ã¬ã³
ã¿ãªããããã«ã¡ã¯ããã«ã§ãã ãã¼ã¿åæã®ä¸çã«è¶³ãè¸ã¿å ¥ãã¦ãã9å¹´ãéãã¾ããã åæå®åæªçµé¨ã§ãã£ãªã¢ãã§ã³ã¸ã§ããã®ã¯å¹¸éã¨ããè¨ãã¾ããããããæå³ç¡ç¥ã ã£ãããããç¡è¬ãªææ¦ãã§ããã®ããããã¾ããããã®ææ¦ã®æ³¥èãè¨é²ã¯ããã®è¨äºã«æ¸ãã¾ããã ãã¸ã·ã§ã³ã¯å¤ããã©ããã¼ã¿ãæ±ãä»äºãã¾ã ç¶ãã¦ãã¾ãã ç§ã¯å®åã§æãåããã¤ã¤ãä¸æ ¼å¥½ã«å¤±æããªããå¦ãã§ãã¾ãããããããªããã¨ã«ã¶ã¤ãããã³ã«æ¬ãè²·ãããã®æ¬ã§ããããªããã¨ãããã°ã¾ãæ¬å±ã«è¡ããèªåãå°ãã§ãç解ã§ããããªæ¬ãæ¢ãã¦è²·ãã¾ãããããã¦ãæ°ã«ãªãåèæç®ãããã°ããããè²·ã£ã¦èªãã§ã¿ãâ¦ã ãããªçæ´»ãç¶ãã¦ãããã¡ã«ãé¨å±ãæ¬ã ããã«ãªã£ã¦ãã¾ãã¾ããã æ£ç´ã«è¨ã£ã¦èªã¿åã£ãã¨ããå®æã®ããæ¬ã¯ããã¾ãããããããå®åã§ä½ããããä¸è©±ã«ãªã£ãæ¬ã¯æ°å¤ããããããããæ¬ã¯ææ¾ããã«æå ã«ç½®ãã¦ãã¾ãã
ã¡ã«ã«ãªã§åçæ¤ç´¢ã¨Edge AIãã¼ã ã«æå±ãã¦ããæ¾äºï¼ãã¶ãï¼ã§ããæ©æ¢°å¦ç¿ã®ã¢ãã«ãæ¬çªãµã¼ãã¹ã«çµã¿è¾¼ãããã®è¨è¨ãã¯ã¼ã¯ããã¼ããã¿ã¼ã³ã«ãã¦å ¬éãã¾ããã Githubã§OSSã¨ãã¦å ¬éãã¦ããã®ã§ãèå³ããæ¹ã¯ãã²ãç¬è¦§ãã ããï¼ PRãIssueãåãä»ãã¦ãã¾ããç§ã®ä½ã£ããã¿ã¼ã³ä»¥å¤ã«ããæç¨ãªãã¿ã¼ã³ãã¢ã³ããã¿ã¼ã³ãããã°å ±æãã¦ã¿ã¦ãã ããï¼ GitHubï¼https://github.com/mercari/ml-system-design-pattern GitHub Pagesï¼https://mercari.github.io/ml-system-design-pattern/README_ja.html ãªãæ©æ¢°å¦ç¿ã·ã¹ãã ã®ãã¶ã¤ã³ãã¿ã¼ã³ãå¿ è¦ãªã®ã æ©æ¢°å¦ç¿ã¢ãã«ã価å¤ãçºæ®ããããã«ã¯æ¬çªãµã¼ãã¹ã社å ã·ã¹ãã ã§å©ç¨ãããå¿ è¦ãããã¾ãããã®ã
æ¥çµ xTECHå ã«äººå·¥ç¥è½ï¼AIï¼å°éãã£ãã«ããã¸ãã¹AIãã2019å¹´10æã«ç«ã¡ä¸ããã®ãæ©ã«ãç¥èå ±æãµã¤ããQiitaãä¸ã§AIï¼æ©æ¢°å¦ç¿ã®è¨äºãåå¹´12æã«åéããã¨ããã49æ¬ãã®è¨äºãéã¾ã£ããæ稿ããã ããçããããããã¨ããããã¾ããã ä»åããã¸ãã¹AIã®ç·¨éæ å½ã¨ãã¦ç§ãè¨å®ããããé¡ãã¯ä»¥ä¸ã®3ã¤ãåãã¼ãã«ã¤ãã¦æ¥çµ xTECHãQiitaã¢ããã³ãã«ã¬ã³ãã¼ã®ã¹ãã³ãµã¼ã¨ãªãã2019å¹´12æ1æ¥ï½25æ¥ã¾ã§1æ¥1æ¬ãã¤è¨äºãåéããã AIéå ´ãKaggleãã¸ã®é æ©æ¢°å¦ç¿ãã©ãå¦ãã ã æ©æ¢°å¦ç¿ãã¼ã«ãæãä¸ãã ãã®çµæãæ©æ¢°å¦ç¿ãç¬ç¿ãããè¦ãã®æ¸ç±ããµã¼ãã¹ãKaggleãªã©ã®æ©æ¢°å¦ç¿ã³ã³ãã«å ¥éããæ¹æ³ãªã©ãAIãæ©æ¢°å¦ç¿ã«èå³ãããã¨ã³ã¸ãã¢ã«ã¨ã£ã¦å¤§ãã«åèã«ãªãè¨äºãéã¾ã£ããæ稿è ã®å±æ§ã«ã¤ãã¦ããã´ãªã´ãªã®æç³»ãããããããSEããä¸
ããããç°å¸¸æ¤ç¥ãåå¼·ãããåå¿è ãä¸ç´è ã®æ¹ã®ããã«ä¸åä¸çéãä½ã£ã¦ã¿ã¾ããã å®éã«ãã£ã質åãå«ã¾ãã¾ãããã»ã¨ãã©ã®è³ªåã¯ãç§ãåå¼·ããªããçåã«æã£ããã¨ã§ãã ãªããå質åã«ã¯ç§ã®å¤±æè«ãæ·»ãã¦ããã¾ããçããã¯ç§ã®ãããªå¤±æãããªããã ç¥ã£ã¦ããã¾ã(^^)ãç°å¸¸æ¤ç¥ã«ç¹åããå 容ã¨ãªã£ã¦ããã¾ãã®ã§ããäºæ¿ãã ããã åå¿è ã®æ¹åã åå¼·ã®ä»æ¹ç·¨ Qï¼ç°å¸¸æ¤ç¥ãåå¼·ãããã®ã§ãããä½ããæãã¤ãã¦è¯ãã®ãåããã¾ããã Aï¼æ¸ç±ãè²·ã£ã¦èªãã®ããã¹ã¹ã¡ã§ãã æåãç§ã¯ãããæ å ±ã§åå¼·ãã¦ãã¾ãããããããããã«ãéçãããã¾ãã ã¨ããããæ¸ç±ï¼å ¥éãæ©æ¢°å¦ç¿ã«ããç°å¸¸æ¤ç¥ï¼ãè²·ã£ã¦èªãã ã¨ãããããªãç¥èã å¾ããã¨ãã§ãã¾ãããæåãããæ¸ç±ãè²·ã£ã¦ããã°ãä¸å¹´ãããå¾ãããã¨ãã§ããã®ã«... ã¨æããã¨ãããã¾ãï¼^^ï¼ ãã ããã¡ãã®æ¬ã¯ãã£ã¼ãã©ã¼ãã³ã°ç³»
ç°å¸¸æ¤ç¥ã«ã¤ãã¦åå¼·ããã®ã§ã¾ã¨ãã¦ããã¾ãã åèæç® ä¸è¨æç®ã大ãã«åèã«ããã¦ããã ãã¾ããï¼ [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] äºæ. "å ¥é æ©æ¢°å¦ç¿ã«ããç°å¸¸æ¤ç¥âRã«ããå®è·µã¬ã¤ã" ã³ãã社(2015) [3] äºæ,æå±±. "ç°å¸¸æ¤ç¥ã¨å¤åæ¤ç¥ (æ©æ¢°å¦ç¿ãããã§ãã·ã§ãã«ã·ãªã¼ãº)" è¬è«ç¤¾ãµã¤ã¨ã³ãã£ãã£ã¯(2015) [4] æ¯æ¸. "ç°å¸¸æ¤ç¥å ¥é" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev
ãããã¡ã¯çæAIã«è¦æãªãã¨ãããããã¡ããã«ã¤ãã¦æãã¦ç³»ã®è³ªåã¯å ¨é¨ãã¡ãå ã ã¨åãã¤ãã®ã¯å¿è«ãåçãæ½è±¡çããã¦å½¹ã«ç«ããªããã¨ãé²åããã ãã®æ¹å¤ãã¾ãã«ãããªã®ã ããã©ããããããæ¥æ¬äººã¯ãChatGPTãä¸çªè¦æãªãã¨ï¼âèªåãç¥ããªããã¨ãæãã¦ãããï¼ã«ChatGPTã使ããã¨ãããã¨ããå¾åãããããããæ¥æ¬ã®çµå¶è ã«èããChatGPTã®ä½¿ãéã®ã¢ã³ã±ã¼ãã§ã¯ããä»äºã§èª¿ã¹ãã®ãããæã«æ´»ç¨ãããã39.3%ã§ãããã ããããç±³å½ã®è·å ´ã§ã®ChatGPTå©ç¨æ³ã®èª¿æ»ã ã¨ãä¸ããé ã«ã ã¢ã¤ãã£ã¢ãåºãã³ã³ãã³ããä½æããã¡ã¼ã«ã«è¿ä¿¡ããããã°ã©ã ã³ã¼ããæ¸ãã¬ã¸ã¥ã¡ãã«ãã¼ã¬ã¿ã¼ãæ¸ããã¬ã¼ã³ãã¼ã·ã§ã³ãä½æãã ã¨ãªã£ã¦ãã¦ãæ å ±æ¤ç´¢ã調ã¹ãã®ã®ã¿ã¹ã¯ã¯ä¸ä½5ä½ã«å ¥ã£ã¦ããªããç·ãã¦ç±³å½ã®åãæã¯ãChatGPTãèªåã«æ å ±ãã¤ã³ãããããããã®ãã¼ã«ã§ã¯ãªãã
ç®æ¬¡[é表示] 1.ã¯ããã« 2.AIé¢é£ã®æéã»ååã»ã¬ã¤ãã©ã¤ã³ã®åå 2.1.å½å ã«ãããåé横æã®ä¸»ãªAIé¢é£ã®æéã»ååã»ã¬ã¤ãã©ã¤ã³ 3.ChatGPTã®æ¥åå©ç¨ã«é¢ããåå 3.1.ChatGPTçã®æ¥åå©ç¨ãæ¨é²ããä¼æ¥æ§ã®ãã¥ã¼ã¹ 3.2.ChatGPTã®æ¥åå©ç¨ãå¶éã»ç¦æ¢ããä¼æ¥æ§ã®ãã¥ã¼ã¹ 3.3.AIãµã¼ãã¹ã®æ¥åå©ç¨ã«é¢ããã¬ã¤ãã©ã¤ã³çå®ã®ãã¥ã¼ã¹ 4.ChatGPTã®ãã©ã¤ãã·ã¼ããªã·ã¼ã¨å©ç¨è¦ç´ã«ãããçæç¹ 4.1.æ å ±æ¼ãã 4.2.æ å ±ã®æ£ç¢ºæ§ 4.3.åç § 5.ChatGPT Webçã®æ¥åå©ç¨ã«ãããæ å ±ã»ãã¥ãªãã£ä¸ã®çæç¹ã®ã¾ã¨ã 5.1.æ å ±æ¼ãã 5.2.æ å ±ã®æ£ç¢ºæ§ 6.ã¾ã¨ã ã¯ããã«æ¨ä»ãChatGPTã«é¢ãã話é¡ã«æ³¨ç®ãéã¾ããªãããæ¥åå©ç¨ãã«ã¤ãã¦æ¤è¨ãããä¼æ¥æ§ãå¢å ãã¦ãã¾ããå®éã«ãã¯ã©ã¦ããªã¹ã¯è©ä¾¡ãAssuredï¼ã¢
0. å¿ããæ¹ã¸ å®å ¨ã«ç³ã¿è¾¼ã¿ã¨ããããªããã¦SoTAéæããã Vision Transformerã®éè¦ãªãã¨ã¯æ¬¡ã®3ã¤ã ã ç»åããããåèªã®ããã«æ±ãã ã¢ã¼ããã¯ãã£ã¯Transformerã®ã¨ã³ã³ã¼ãã¼é¨åã ã 巨大ãªãã¼ã¿ã»ããJFT-300Mã§äºåå¦ç¿ããã SoTAãä¸åãæ§è½ãç´$\frac{1}{15}$ã®è¨ç®ã³ã¹ãã§å¾ãããã äºåå¦ç¿ãã¼ã¿ã»ããã¨ã¢ãã«ãããã«å¤§ãããããã¨ã§ã¾ã ã¾ã æ§è½åä¸ããä½å°ãããã 1. Vision Transformerã®è§£èª¬ Vision Transformer(=ViT)ã®éè¦ãªé¨åã¯æ¬¡ã®3ã¤ã§ãã å ¥åç»å ã¢ã¼ããã¯ã㣠äºåå¦ç¿ã¨ãã¡ã¤ã³ãã¥ã¼ãã³ã° ããããã«ã¤ãã¦è¦ã¦ããã¾ãããã 1.1 å ¥åç»å ã¾ãå ¥åç»åã«ã¤ãã¦ã§ããViTã¯Transformerããã¼ã¹ã¨ããã¢ãã«(ã¨ããããä¸é¨ã丸ã 使ã£ã¦ãã)ã§ããã
æ¦è¦ WEBç³»ã®ãµã¼ãã¹ã§è²ã ãªè©¦ä½ãå®æ½ããå¾ã«å¹æãæ¤è¨¼ããã®ã¯é常ã«éè¦ã ã¨æãã¾ããã ãã®ããæ¹ã¨ãã¦åºæ¬çãªçµ±è¨å¦ãååã«ä½¿ããã¨æã£ã¦ãã¾ãã ä»åã¯åºæ¬çãªçµ±è¨å¦ãããã¸ãã¹ã§ä½¿ãã試ä½ã®å¹ææ¤è¨¼ããã¼ã¿åæãç®çã«Python+JupyterLab(Docker)ã使ã£ãçµ±è¨çãã¼ã¿åæã®ããæ¹ãã¾ã¨ãã¾ããã ã¾ãä»å使ã£ãnotebookã¯ä»¥ä¸ã«ãããã¾ãã®ã§ãåèãã ããã https://github.com/hikarut/Data-Science/tree/master/notebooks/statisticsSample ç°å¢ 以ä¸ãåèã«Dockerã§JupyterLabã使ããç¶æ ãåæã¨ãã¾ãã Dockerã§èµ·åããJupyterLabã§vimãã¼ãã¤ã³ãã使ã
åºå ¸ï¼æ¥çµã¯ãã¹ããã¯ã2020å¹´2æ7æ¥ ï¼è¨äºã¯å·çæã®æ å ±ã«åºã¥ãã¦ãããç¾å¨ã§ã¯ç°ãªãå ´åãããã¾ãï¼ æ¥çµ xTECHå ã«äººå·¥ç¥è½ï¼AIï¼å°éãã£ãã«ããã¸ãã¹AIãã2019å¹´10æã«ç«ã¡ä¸ããã®ãæ©ã«ãç¥èå ±æãµã¤ããQiitaãä¸ã§AIï¼æ©æ¢°å¦ç¿ã®è¨äºãåå¹´12æã«åéããã¨ããã49æ¬ãã®è¨äºãéã¾ã£ããæ稿ããã ããçããããããã¨ããããã¾ããã ä»åããã¸ãã¹AIã®ç·¨éæ å½ã¨ãã¦ç§ãè¨å®ããããé¡ãã¯ä»¥ä¸ã®3ã¤ãåãã¼ãã«ã¤ãã¦æ¥çµ xTECHãQiitaã¢ããã³ãã«ã¬ã³ãã¼ã®ã¹ãã³ãµã¼ã¨ãªãã2019å¹´12æ1æ¥ï½25æ¥ã¾ã§1æ¥1æ¬ãã¤è¨äºãåéããã AIéå ´ãKaggleãã¸ã®é æ©æ¢°å¦ç¿ãã©ãå¦ãã ã æ©æ¢°å¦ç¿ãã¼ã«ãæãä¸ãã ãã®çµæãæ©æ¢°å¦ç¿ãç¬ç¿ãããè¦ãã®æ¸ç±ããµã¼ãã¹ãKaggleãªã©ã®æ©æ¢°å¦ç¿ã³ã³ãã«å ¥éããæ¹æ³ãªã©ãAIãæ©æ¢°å¦ç¿ã«èå³ããã
Transformerã¯åæ£ã§ãã代åã¨ãã¦è¨ç®éãççºçã«å¤ãã¨ããä¸å©ãããã ä¸åº¦ã¿ããªãå¿ãã¦ãããªã«ã¬ã³ããã¥ã¼ã©ã«ãããã¯ã¼ã¯(RNN)ããã±ã¼ã£ã¨ãã¦ããå ´åã§ã¯ãªãã£ãã ãªãã¨ãGPT3並ã®æ§è½ãæã¤ããããå®å ¨ã«ãªã¼ãã³ãªå¤§è¦æ¨¡è¨èªã¢ãã«ãå ¬éããã¦ããã ãã®ãªãRWKV(RuwaKuvã¨çºé³ããã¨æ¸ãã¦ãããã«ã¯ã¯ã?) RWKVã¯RNNãªã®ã§GPUã¡ã¢ãªãããã»ã©å¤§éã«å¿ è¦ã¨ããªãã 3GBã®VRAMã§ãåãã¨ããã æéããªãæ¹ã¯ãããªãã覧ãã ãã åã®å¤±æã¯ãä½ãèããã«git lfs installã§ãã£ã¬ã¯ããªãã¨ã³ãã¼ãããã¨ãããã¨ã ãã®ãã£ã¬ã¯ããªã«ã¯éå»ã®ã¢ãã«ãã¼ã¿ãå ¨é¨ããã®ã§ãã²ã¨ã¤30GBã®ã¢ãã«ãã¼ã¿ãä½ååããã¦ã³ãã¼ããããã¨ãã¦ãã¦çµãããªãã£ãã®ã ã ã¢ãã«ãã¼ã¿ã¯ä¸ã¨ã¤ããã°ååãªã®ã§ã²ã¨ã¤ã ãã«ããã 次ã«ãchatã®ãªã
ããã«ã¡ã¯ãã¯ãã¯ããããã¼ãæµéåºç¤ã¢ããªã±ã¼ã·ã§ã³éçºã°ã«ã¼ãã®ãªãµï¼@s_osa_ï¼ã§ãã çé®®é£åã® EC ãµã¼ãã¹ã§ããã¯ãã¯ããããã¼ãã§ã¯ãã1åããéæç¡æããã¯ããã¨ãããµã¼ãã¹ã®ç¹å¾´ãå®ç¾ããããã«ãååã®æµé網ãèªåãã¡ã§ã¤ãã£ã¦ãã¾ãã ãã®ã¨ã³ããªã§ã¯ãååãã¦ã¼ã¶ã¼ã«å±ããããã®é éã«ã¼ããèªåçæãã¦ããä»çµã¿ã«ã¤ãã¦ç´¹ä»ãã¾ãã 解決ãããåé¡ é éã«ã¼ãã¨ã¯ ã¯ãã¯ããããã¼ãã«ã¯ããã¤ãã®æµéæ¹æ³ãããã¾ãããããã§ã¯ãã¹ãã¼ã·ã§ã³ä¾¿ãã¨å¼ã°ãããã®ã«ã¤ãã¦è§£èª¬ãã¾ããä»ã®æµéæ¹æ³ãªã©ãå«ãå ¨ä½åãæ°ã«ãªãæ¹ã¯ä»¥ä¸ã®ã¨ã³ããªããªã¹ã¹ã¡ã§ãã ã¯ãã¯ãããçé®® EC ãå±ãã®è£å´ 2022 å¹´ç - ã¯ãã¯ãããéçºè ããã° ã¹ãã¼ã·ã§ã³ä¾¿ã§ã¯ãããã¨å¼ã°ããæµéæ ç¹ããã¦ã¼ã¶ã¼ãååãåãåãã«è¡ãå ´æã§ããã¹ãã¼ã·ã§ã³ã¸ã¨ååãéã³ã¾ããæ±äº¬é½ãç¥å¥å·
ð Travel around the world as we explore Machine Learning by means of world cultures ð Cloud Advocates at Microsoft are pleased to offer a 12-week, 26-lesson curriculum all about Machine Learning. In this curriculum, you will learn about what is sometimes called classic machine learning, using primarily Scikit-learn as a library and avoiding deep learning, which is covered in our AI for Beginners
è¨èªã¢ãã«ã®ChatGPTãç»åçæAIã®DALL·EãæãããAIç 究æã®OpenAIã¯ãAIæè¡ã®æªç¨ãé²ã社ä¼ã«å好çãªå½¢ã§çºå±ããããã¨ãç®çã«ããµã ã»ã¢ã«ããã³æ°ãã¤ã¼ãã³ã»ãã¹ã¯æ°ãã2015å¹´ã«çºè¶³ãããéå¶å©çµç¹ã§ãããããªOpenAIã®åµå§ã¡ã³ãã¼ã«åãé£ããã¤ã«ã¤ã»ãµããã´ã¡ã¼æ°ããAIããªã¼ãã³ã«ããã¨ããè¨ç«å½åã®ç念ã¯èª¤ãã ã£ãã¨ãITç³»ãã¥ã¼ã¹ãµã¤ãã»The Vergeã®ã¤ã³ã¿ãã¥ã¼ã®ä¸ã§èªãã¾ããã OpenAI co-founder on companyâs past approach to openly sharing research: âWe were wrongâ - The Verge https://www.theverge.com/2023/3/15/23640180/openai-gpt-4-launch-closed-research-il
In ChatGPT Prompt Engineering for Developers, you will learn how to use a large language model (LLM) to quickly build new and powerful applications. Using the OpenAI API, youâll be able to quickly build capabilities that learn to innovate and create value in ways that were cost-prohibitive, highly technical, or simply impossible before now. This short course taught by Isa Fulford (OpenAI) and And
å°ãªãã¨ãããã®åéã«çµé¨ã®ç¡ã人ããã®æ¬ã ããèªãã§ãã»ã¨ãã©ç解ã§ããªãã§ãããã ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ã«å¯¾å¿ããPythonã©ã¤ãã©ãªã¨Jupyter notebookãåå¨ããã§ãããããããã¨ãªããï¼ ãã®ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãå ã«ãã¦å®éã«ã³ã¼ãã«èµ·ããããJupyter notebookã¨Pythonã©ã¤ãã©ãªãåå¨ãã¾ãã http://www.quantsportal.com/ Jacques Joubertãããéè¨ãã¦ããWebãµã¤ãã§ãããå½¼ã®ä¿®å£«èª²ç¨ã®ããã¸ã§ã¯ããããã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãã«åºã¥ããPythonã©ã¤ãã©ãª(mlfinlab)ã®ä½æã¨ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ãJupyter Notebookã§è§£èª¬ããç©ããã®è§£èª¬pdfã¨ããç©ã§ãã ãã¡ã¤ãã³ã¹æ©æ¢°å¦ç¿ã§èª¬æããã¦ããæ¦å¿µã«ã¤ãã¦å®éã«ã³ã¼ãåããã¦ãã¾ãã ãããã®ã³ã¼ããèªãã§ããã¨ããã¡ã¤ãã³ã¹æ©
ã¯ããã« è©ä¾¡é¢æ°ï¼è©ä¾¡ææ¨ï¼ã«ã¤ãã¦ãããµããªç解ã ã£ãã®ã§ã代表çãªè©ä¾¡é¢æ°ãã¾ã¨ãã¦ã¿ã¾ããã è©ä¾¡é¢æ°ã¨ã¯ããããã©ããªãã®ãªã®ããããããã®è©ä¾¡é¢æ°ã¯ã©ããªæå³ãæã¤ã®ããå®éã«ä½¿ãæã®ãµã³ãã«ã³ã¼ããç°¡åã«ã¾ã¨ãã¦ãã¾ãã è©ä¾¡é¢æ°ã®è¿½å ãå 容ã®ä¿®æ£ã¯ä¸è¨ã§ãã¦ãã¾ãã è©ä¾¡é¢æ°ã¨ã¯ è©ä¾¡é¢æ°ã¨ã¯å¦ç¿ãããã¢ãã«ã®è¯ãã測ãææ¨ãæãã¾ãã ç®çé¢æ°ã¨ã®éã æ©æ¢°å¦ç¿ãåå¼·ãã¦ããã¨ãç®çé¢æ°ãæ失é¢æ°ãã³ã¹ãé¢æ°ãªã©ãããããªååãç®ã«ãã¾ãã ã¾ãã¯ãç®çé¢æ°ã¨ã®éãã«ã¤ãã¦ç¢ºèªãã¾ãã ç®çé¢æ° ã¢ãã«ã®å¦ç¿ã§æé©åãããé¢æ° å¾®åã§ããå¿ è¦ããã ã¤ã¾ããå¦ç¿ä¸ã«æé©åãããã®ãç®çé¢æ°ãå¦ç¿å¾ã«è¯ãã確èªããããã®ææ¨ãè©ä¾¡é¢æ°ã¨ãããã¨ã«ãªãã¾ãã æ失é¢æ°ãã³ã¹ãé¢æ°ã誤差é¢æ°ã¯ç®çé¢æ°ã®ä¸é¨ã«ãªãããã§ãã ï¼ããã¤ãè°è«ããããããªã®ã§ãããã»ã¨ãã©åããã®ã¨
ã¯ããã« èªåã¯å ã pandasãè¦æã§Kaggleã³ã³ãåå æã¯åºæ¬çã«BigQueryä¸ã®SQLã§ç¹å¾´éãä½ããæä½éã®pandasæä½ã§ãã¼ã¿å¦çããã¦ãã¾ããã ããããããã³ã¼ãã³ã³ããã£ã·ã§ã³ã«åå ãããã¨ã«ãªããpythonã§è»½å¿«ã«ãã¼ã¿å¦çãããªãå¿ è¦ãåºã¦ããã®ã§åå¼·ãã¾ããã ããã§ãå½æã®åå¼·ã¡ã¢ããã¨ã«ãããã ãç¥ã£ã¦ããã°Kaggleã§ããããæ¦ããããªãã¨æã£ã¦ããpandasã®ä¸»è¦æ©è½ãã¾ã¨ãã¾ããã æ³¨è¨ å®æ¦å ¥é ã®ã¤ããã ã»ã¼è¾æ¸ ã«ãªã£ã¦ãã¾ãã¾ãã orz pandasã¨ã¯ãªãããçãªå 容ã¯æ¸ãã¦ãã¾ãã (import pandasãDataFrameã¨ã¯ä½ããªã©) pandas1.0ç³»ã§ãåãããã«æ¸ããã¤ããã§ããééã£ã¦ãããã¿ã¾ãã ç®æ¬¡ ã¯ããã« æ³¨è¨ ç®æ¬¡ Options DaraFrame èªã¿æ¸ã CSVãã¡ã¤ã« èªã¿è¾¼ã¿ æ¸ãåº
OpenAIã¯GPT-3ã®æ¬¡ã®ç 究ãå§ãã¦ãã¾ãï¼ ä¸éãGPT-3ã®ãã¢ã«æ¹§ãä¸ããä¸ï¼OpenAIã¯Scaling Lawã«é¢ãã2æ¬ã®è«æãã²ã£ããã¨å ¬éãã¾ããï¼ Scaling Lawãä¸è¨ã§èª¬æãããªããTransformerã®æ§è½ã¯ãã£ã3ã¤ã®å¤æ°ã®ã¹ãä¹åã«æ¯é ããã¦ãããã¨ãããã®ã§ãï¼ Scaling Lawã¯ããåä½ã ããªãèå³æ·±ã話ã§çµããããããã¾ããï¼å®éã«è±èªåã§ããã¾ã話é¡ã«ããã£ã¦ãã¾ããï¼ãããï¼ãã®æ³åã®æ¬å½ã®åãã«æ°ã¥ãã¦ããç 究è ããã¦ï¼ãªã話é¡ã«ãªããªãã®ãå°æãã¦ãã¾ãï¼ I am curious why people are not talking more about the OpenAI scaling law papers. For me, they seem very significant. What I heard so far:
ãéè¦ãæç« è¦ç´AIã¿ã³ãããã¼ã¿ã« ãµã¼ãã¹çµäºã®ãç¥ãã ãã®åº¦ãæç« è¦ç´AIã¿ã³ãããã¼ã¿ã«ã¯ãèª ã«åæãªãã2023å¹´8æ31æ¥(æ¨) 19:00ããã¡ã¾ãã¦ããµã¼ãã¹ãçµäºããã¦ããã ããã¨ã¨ãªãã¾ããã é·ãããå©ç¨ããã ãã¾ãã¦ãèª ã«ãããã¨ããããã¾ããã 詳細ãè¿é対å¿ã®æµãã«ã¤ãã¾ãã¦ã¯ããã¡ããã覧ãã ããã
TL;DR æ©æ¢°å¦ç¿ã®ã¢ã«ã´ãªãºã ã«ã¯è©³ãããªããããã©å®è£ ã¯ããªããã¨ããç«å ´ã®äººåãã®å¦ç¿è³æã¾ã¨ã ç¥äººåãã§ãå ·ä½çã«ã¯ååå»å¸«ãã¿ã¼ã²ããèªè ï¼ãã¡ãçãï¼ï¼ã ããä¸å®åº¦ä»ã®äººã«ãå½¹ã«ç«ã¤ãã æ¹ãã¦è²ã çºãã¦ã¿ã¦ãã£ã±ã大å¦ã®è¬ç¾©ã¯è³ªã®é«ããã®ãå¤ãã¨æã£ã ç¥äººãæ©æ¢°å¦ç¿ã®ã¢ã«ã´ãªãºã ãå¦ã³ããã¨è¨ã£ã¦ããã®ã§ããªã¹ã¹ã¡ã®è³æãªã©ãè¦ç¹ã£ã¦ã¿ãããã°ã¨ã³ããªã æ©æ¢°å¦ç¿ã¸ã®é¢ããæ¹ãéã«ã¢ã«ã´ãªãºã ã¨å®è£ ã§åããå ´åã«ãã¢ã«ã´ãªãºã ã«ã¯è©³ãããªããããã©å®è£ ãããããã§ã¯ãªããã¨ããç«å ´ã®äººåãã§ããã ãã®ãããªã¿ã¤ãã®äººã¯ãããªã«ããªãã¨æããã©ãå ·ä½çã«ã¯ãã¡ã¤ã³ã¨ãã¹ãã¼ãã¨ãã¦æ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ã¨ä¸ç·ã«ã¢ã«ã´ãªãºã ã»ãã¼ã¿æ¹åã«åãçµãã§ãã¦ãã¢ã«ã´ãªãºã ã§ã©ããªãã¨ããã£ã¦ããããã¡ããã¨ç解ããããã¿ãããªã®ãä¸ä¾ã¨ãªãã ãªãã¨ãªãã®ã¤ã¡ã¼ã¸çãªç解ã ãã ã¨ã
æ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIæè²å¼·åæ ç¹ã³ã³ã½ã¼ã·ã¢ã MIã»ã³ã¿ã¼ã¯ã2022年度æ¿åºäºç®ã«çãè¾¼ã¾ãããæ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIæè²ã®å ¨å½å±éã®æ¨é²ãäºæ¥ã®æ±äº¬å¤§å¦ã«ãããå®æ½ä¸»ä½ã§ãã åäºæ¥ã§é¸å®ããã29大å¦ï¼æ ç¹æ ¡11大å¦ãç¹å®åéæ ¡18大å¦ï¼ã®ã³ã³ã½ã¼ã·ã¢ã ã®å¹¹äºæ ¡ã¨ãã¦ã大å¦ãç£æ¥çãç 究æ©é¢çã¨å¹ åºããããã¯ã¼ã¯ãå½¢æããå°åãåéã«ãããå é²çæè²ã¢ãã«ã®æ ç¹ã¨ãã¦ãæ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIã®å®è·µçæè²ã®å ¨å½æ®åã«åªãã¾ãã åæã«ããã®åéãç½å¼ã§ããå½é競äºåã®ãã人æããã³ç£å¦ã§æ´»èºã§ãããããã¯ã©ã¹ã®ã¨ãã¹ãã¼ã人æã®è²æãç®æãã¾ãã [ã³ã³ã½ã¼ã·ã¢ã ãã¼ã ãã¼ã¸] æ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIã®æ´»ç¨äºä¾åç» æ¬åç»éã¯æ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIãªãã©ã·ã¼ã¬ãã«ææã®å°å ¥ã¨ãªããããªæ´»ç¨äºä¾ãåéãããã®ã§ããæ°çã»ãã¼ã¿ãµã¤ã¨ã³ã¹ã»AIãªãã©ã·ã¼ã¬
ã¿ãªããæ©æ¢°å¦ç¿ç³»ã®ç°å¢æ§ç¯ã¯ã©ããã£ã¦ã¾ãã? åã¯æè¿ã¯ Docker ã使ã£ã管çãè¡ã£ã¦ãã¾ãã ç¹ã«å¸«å ãå± ãªãã£ãã®ã§ãããã£ãã人ã®ã¤ã¡ã¼ã¸ãè¦ããææ¢ã㧠docker ãã¤ããã¤ãããã¦ããä¸ã§ãæåãããã£ã¨ãã°ããã£ããªã¼ã¨ãããã¨ãããã¤ãããã®ã§ã¡ã¢ã¨ãã¦æ®ãã¦ããã¾ãã 大ãã2ã¤ã§ãã ãã£ãã·ã¥ã¯æ¶ã ãã¹ããæ¸ã ãã£ãã·ã¥ã¯æ¶ã ã©ã¤ãã©ãªããããã㨠install ããã¨å¤§æµã®å ´åãã¦ã³ãã¼ããããã¡ã¤ã«ãä¿åããã¦ããå ´åãå¤ãã§ããä½ãã®ã¿ã¤ãã³ã°ã§åã³ãã®ã©ã¤ãã©ãªãã¤ã³ã¹ãã¼ã«ããéã«ã¯ãã¦ã³ãã¼ããããã¡ã¤ã«ã使ã£ã¦ãç´ æ©ãã¤ã³ã¹ãã¼ã«ãããã¨ãã§ãã¾ã (ãã®ä»çµã¿ããã£ãã·ã¥ã§ã)ã ãã£ãã·ã¥ãããã¨å®¹éãéããªãã¨ããæ¬ ç¹ãããã¾ããéããã¤ã¡ã¼ã¸ã¯ pull ã«åã«æéããããã¾ããããã·ã¹ãã ã¨ãã¦ãããã¤ããæã«ãã©ãã£ãã¯ã
æ¬è¬æ¼ã§ã¯ï¼æ°çæé©åã®åºæ¬çãªæ çµã¿ãæ¦è¦³ãããã¨ã§ï¼æ°çæé©åãæ¬æ ¼çã«å¦ç¿ãããã£ãããä¸ãããã¨ãç®çã«ãã¦ãã¾ãï¼ ãã®ã¹ã©ã¤ãã§ã¯ï¼å対åé¡ãã¯ããã¨ããå¤ãã®éè¦ãªæ¦å¿µã®èª¬æãçç¥ãã¦ãã¾ãï¼ããï¼ãã®ã¹ã©ã¤ããèªã¿çµãã¦æ°çæé©åãæ·±ãç解ã§ããã¨æãããªãï¼ããã¯ãã¶ãæ°ã®ããã§ãï¼â¦
AIã¯å²ç¢ãªã©ã®ãã¼ãã²ã¼ã ãèªåé転è»ãã¿ã³ãã¯è³ªæ§é ã®è§£æãªã©ãã¾ãã¾ãªåéã§å®ç¨åããã¦ãã¾ããããããä¸è¦ããã¨AIã¨ã®ç¸æ§ããããããªãæ ªå¼å¸å ´ã¸ã®æè³ãã«ããã¦ã¯ãæ©æ¢°å¦ç¿ãAIã«ããææ決å®ããã¾ãæ®åãã¦ããªãã¨ã®ãã¨ãããã§ãã±ã³ããªãã¸å¤§å¦ããªãã¯ã¹ãã©ã¼ã大å¦ã®ç 究ãã¼ã ãã2000å¹´ï½2018å¹´ã«çºè¡¨ãããè¤æ°ã®ç 究ãããAIã使ã£ãæ ªå¼æè³ã¯å®ç¨åã§ããã®ãï¼ããåæããç 究çµæãçºè¡¨ãã¾ããã A review of machine learning experiments in equity investment decision-making: why most published research findings do not live up to their promise in real life | SpringerLink https://lin
æç³»åã¢ãã«ãæ±ãä¸ã§ããã¡ã¯ãã¹ã¿ã³ãã¼ãã«ãªããããªPythonã©ã¤ãã©ãªãåºã¦ãã¾ããã æç³»åã¢ãã«ãæ±ãPythonã©ã¤ãã©ãªã¯ã scikit-learn ã®ãããªããã¡ã¯ãã¹ã¿ã³ãã¼ããªãã®ãããã¾ããããã®ããæç³»åã¢ãã«ãç¨ãã¦å®è£ ãè¡ãããã«ã¯ãæ§ã ãªã©ã¤ãã©ãªã®APIãªã©ã®ä»æ§ãç解ãã¤ã¤ãããã«åããã¦ãã¼ã¿æ´å½¢ãè¡ããè©ä¾¡ããå¿ è¦ããããããã¯ãªããªãè¾ãä½æ¥ã§ããã ã¹ã¤ã¹ã®ä¼æ¥ Unit8 ãä»å¹´(2020å¹´)6ææ«ã«å ¬éãã Darts ã¯ã¾ãã«ãããã£ã課é¡ã解決ããã©ã¤ãã©ãªã§ããæç³»åã«é¢ããæ§ã ãªã¢ãã«ã scikit-learn ãã¼ã¹ã®APIã§çµ±ä¸çã«æ±ããã¨ãã§ãã¾ãã github.com Darts ã¯ç¾å¨ãä¸è¨ã®ã¢ãã«ã«å¯¾å¿ãã¦ãã¾ããå å´ã§ã¯ statsmodels ã Prophet(stan) ã Pytorch ãªã©ã使ã£ã¦ãã¦ã
æ©æ¢°å¦ç¿ãè¨äºé ä¿¡ã«æ¡ç¨ãããããªÂ - 0ããæ§ç¯ããã¬ã³ã¡ã³ãã¨ã³ã¸ã³ã®ã¢ã¼ããã¯ãã£è¨è¨ ã³ãããæ ªå¼ä¼ç¤¾ãéå¶ãã女æ§åãæ å ±ãµã¼ãã¹ããããªãã§ã¯ã2019å¹´12æã«è¨äºé ä¿¡ã§æ©æ¢°å¦ç¿ã«ããã¬ã³ã¡ã³ãã¨ã³ã¸ã³ãæ§ç¯ã2020å¹´åé ã«ãã¹ããå®äºãã¾ããã æ©æ¢°å¦ç¿ãæ¡ç¨ããèæ¯ãè¨è¨ããã¢ã¼ããã¯ãã£ã¨ãã¹ãã®çµæã«ã¤ãã¦ä¼ºãã¾ããã ã³ãããæ ªå¼ä¼ç¤¾ãéå¶ããã女æ§ã対象ã¨ããæ å ±ãµã¼ãã¹ã ãããªãã¯ã2014å¹´ã®ãªãªã¼ã¹ä»¥éãçå®ã«ã¦ã¼ã¶ã¼ãå¢ããã2020å¹´3æç¾å¨ãã¢ããªä¼å¡æ°ã¯240ä¸äººï¼æ¥æ¬ã§2019å¹´ã«åºç£ããä¸ã§3人ã«1人ãå©ç¨ï¼ããããã¡ãéã¾ããªã³ã©ã¤ã³ã³ãã¥ããã£ã¨ãã¦å®çãã¦ãã¾ãã ãããªã§ã¯2019å¹´12æããµã¼ãã¹å ã«æ²è¼ããè¨äºã®é ä¿¡ã«ã¤ãã¦æ©æ¢°å¦ç¿ãæ¡ç¨ããã¬ã³ã¡ã³ãã¨ã³ã¸ã³ã¸å¤æ´ãã2020å¹´åé ã«ãã¹ããå®äºãããããæ£å¼ãªãªã¼ã¹ã¨ãªãã¾ãã
ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response. We are excited to introduce ChatGPT to get usersâ feedback and learn about its strengths and weaknesses. During the research preview, usage of ChatGPT is free. Try it now at chat.openai.com. In the following sample, ChatGPT asks the clarifying questions to debug code. I
ABEJA 㧠Research Engineer ããã£ã¦ããä¸å·ã§ãï¼æ®æ®µã¯è«æèªãã ãï¼æ©æ¢°å¦ç¿ã¢ãã«ãå®è£ ãããï¼ã¤ã³ãã©ãæ§ç¯ããããã¦ãã¾ãï¼ä»åã®ããã°ã§ã¯ï¼Insight for Retail ã®ä¸æ©è½ã¨ãã¦æä¾ãã¦ãããªãã¼ã¿åæã«ç¨ããç¹å¾´éDBã®æ¹åã«åããè¨èªé¸å®ã«ã¤ãã¦ç´¹ä»ãã¾ãï¼ â» ããããã®æ¹ã ããã®ã³ã¡ã³ããããã¨ããããã¾ãï¼ããã ãã観ç¹ããã¼ã¹ã«ã2020-04-14 追è¨ã以ä¸ã«å®é¨ã追å ãã¾ããï¼ ã¢ããã¼ã·ã§ã³ ãªãã¼ãåæã§ã¯ï¼ä»»æã®ç¹å¾´éãã¯ã¨ãªã«æãé¡ä¼¼ããç¹å¾´éãæ°100msec以å ã«æ¤ç´¢ããå¿ è¦ãããï¼ä¸è¬çãªãã¼ã¿ãã¼ã¹ã§ã¯å®ç¾ãããã¨ãé£ããã¨ãã課é¡ãããã¾ããï¼ããã§ï¼ãããã㯠python ã§ç¬èªã®ã¤ã³ã¡ã¢ãªãã¼ã¿ãã¼ã¹ãå®è£ ãéç¨ãã¦ãã¾ããï¼ãã®ãã¼ã¿ãã¼ã¹ããµã¼ãã¹ã®æé·ã«åããã¦éçãè¿ãã¤ã¤ããã®ã§ï¼ã¢ã«ã´ãªãºã
ãã¯ã½ã¨ã ãµãã¼ã¿ã¼ã®ç½äºã§ãã ä»å㯠Matthew McAteeræ°ã«ããããã°è¨äºNitpicking Machine Learning Technical Debtã®å訳ãç´¹ä»ãã¾ãã åèè ã®è¨±å¯åå¾æ¸ã¿ã§ãã Thank you! ã¢ã¡ãªã«ã®å½å ãã¿ãå«ãã§ãã¦ãæ¥æ¬èªã ã¨ç解ãã«ããç®æãããã¾ãããæ©æ¢°å¦ç¿ã®æè¡çè² åµãã©ã対å¦ãã¦ãããã«ã¤ãã¦ãã¨ã¦ãå½¹ã«ç«ã¤è¨äºã ã¨æãã¾ãã Nitpicking Machine Learning Technical Debt (æ©æ¢°å¦ç¿ã®æè¡çè² åµã®éç®±ã®é ãã¤ã¤ã) ã¤ã³ãããã¯ã·ã§ã³ Part1 æè¡çè² åµã¯ããªãã®äºæ³ä»¥ä¸ã«æªã Part2 æ©æ¢°å¦ç¿ã®æ¼ ç¶ã¨ããæ§è³ª Part3 (é常ã®ä¾åé¢ä¿ã®é ä¸ã«ãã) ãã¼ã¿ä¾åé¢ä¿ Part4 ã¤ã©ã¤ã©ãããã»ã©æªå®ç¾©ãªãã£ã¼ãããã¯ã«ã¼ã å¾ç·¨ã«ç¶ãã¾ã Nitpicking Ma
Weâve trained a neural network called DALL·E that creates images from text captions for a wide range of concepts expressible in natural language. DALL·E is a 12-billion parameter version of GPT-3 trained to generate images from text descriptions, using a dataset of textâimage pairs. Weâve found that it has a diverse set of capabilities, including creating anthropomorphized versions of animals and
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã