りゅうたい‐せいりきがく〔リウタイ‐〕【流体静力学】
流体静力学
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/17 16:43 UTC 版)
連続体力学 | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
| ||||||||
流体静力学(りゅうたいせいりきがく、fluid statics, hydrostatics)は静止流体についての科学であり、流体力学の一分野である。流体静力学という用語は通常、対象物の力学的取り扱いを指し、流体が安定した平衡下の状態についての研究を含んでいる。仕事をする流体の活用は水理学と呼ばれ、動的な流体についての科学は流体動力学と呼ばれる。
静止流体の圧力
流体の基本的性質により、流体はせん断応力が存在している状態では静止状態を保つことができない。しかし、流体はどのような表面に接していてもその表面の法線方向に圧力を与える。流体のある部分を無限小の立方体と考えたとき、この立方体の全ての面は等しい圧力を持つ、という平衡の原理に従う。これが成り立たない場合、流体は合力の生じる方向に動いてしまう。よって流体の静止状態の流体の圧力は等方的であり、全ての方向に同じ大きさをもつ。流体はこの特性によりパイプや管を経由して力を伝えることができる。即ち、パイプなどの中の流体に印加された力は流体によって伝播され、パイプの反対側へと伝わる。
この概念は1647年にフランス人の数学者であり哲学者であるブレーズ・パスカルによって少し拡張された形で数式化され、パスカルの原理として知られている。この法則は水理学において多くの重要な応用がなされている。
静水圧
平衡の状態では、流体の性質は無限小の立方体による制御体積分析によって決定される。この立方体の全ての面にかかる応力は法線方向であり大きさが等しいことより、圧力勾配はポテンシャル勾配によって線形に増加する。このポテンシャル勾配は重力によるものと考えられることが多いが、電場や他のポテンシャル場によって生じることもある。重力によるポテンシャル勾配下では、流体中の圧力は流体の密度と重力の積により線形に増加する。多くの流体は圧縮しないと考えられるため、流体の密度は場所によらず一定であると仮定することができる。ガスの環境では同様の仮定をすることはできない。流体中の圧力を決定するために積分を実行すると、流体が開放空気に接する場合には積分定数は気圧に依存する。水が閉じた系である場合、積分の圧力定数は系内の基準圧力に等しい。
「流体静力学」の例文・使い方・用例・文例
- 流体静力学のページへのリンク