2-01-01ãã1å¹´éã®è¨äºä¸è¦§
âââââââââââ â ããã®ãªãã«ãã â âââââââââââ
æ¬æ¸ã®å¤§æ£®è§£èª¬ã®ããªã§ããã¨ãRPGãªããã§ã¯ãªã¢ãã¦ãããããä¸åº¦ãã¬ã¤ããã¨é ãè¦ç´ ãåºã¦ãããããããã§ãããããããæãã®ãã¿ããã¿ãã¬ãã¦ã¾ããã»ãã¨ã«åèªããªãã¨åãããªããããªè©±ãªãã§ãäºåèªãã 人ã ããèªãã§ä¸ããããã¸ãâ¦
ããã¾ããªå¹´è¡¨ ---------------------------+-----------+------------+----------- ã³ãã· | CZ |ã¢ãã©ã³ã¿ | æ è¥¿æ¦ ---------------------------+-----------+------------+----------- ã¤ãã·ã㦠ãã©ã³ã« ã¬ããªã¨ã« |ãªã¼ã©ã³ã | ã«ã¼ãã« | | | â¦
ç¨èªãªã³ã¯ ä½ç¸ç©ºé (topological space) âMathWorld å¤æ§ä½ (manifold)âMathWorld ã¦ã¼ã¯ãªãã空é Euclidian spaceâMathWorld ãªã¼ãã³ç©ºé Riemannian Geometry âMathWorld æ¬ãªã¼ãã³ç©ºé æ¨æºãã¡ã¤ãã¼ (standard fiber) ãã¡ã¤ãã¼æ (fiber bundleâ¦
ã¤ã³âãã«ãº (Yang-Mills) ã¤ã³âãã«ãºå対æ§ã¨ãããã®ãããã¾ããã詳ããã¯ç¥ãã¾ãããå¼±é»çµ±ä¸çè«ã¨ãã ã£ãï¼ ãã調ã¹ã¦ã¿ãã Schur-Weyl duality ã¨ã Poincare duality ã¨ã Brill-Noether duality ã¨ãããããããªãã§ããããããããã¨ã ã£â¦
æå¾ã®æ° æå¾ã«åºã¦ããæ°ãç´ å æ°å解ãã㨠2*67*3527*20353*27851 ã«ãªãã(ç¹ã«æå³ç¡ã)
ãã¿ãã¬æ³¨æï¼å®å®ã®çµµ ãããªæãããªï¼ãã¿ãã¬ãªãã§èªãã 人ã ãã¯ãªãã¯âå³
[ç®æ¬¡ã«æ»ã] âäºæ¬¡å ææã®æ¥µ âãã¿ãã¬ï¼U** âï¼ã®åå² (Partition of Unity) äºæ¬¡å ææã®æ¥µ å°çã®ãããªä¸æ¬¡å ã®ææã®è¡¨é¢(äºæ¬¡å çé¢ã2-sphere)ã ã¨ãèªè»¢ããã¨ãåããªãå ´æã¨ããã®ã¯ç¹äºã¤ã§ãå極ç¹ã¨å極ç¹ã§ããããã¯ï¼æ¬¡å ã®å³å½¢ãã¨ããâ¦
[ç®æ¬¡ã«æ»ã] äºæ¬¡å ã®æ空 å次å åç¤ã®é¢ç© ã¤ãã«ãªã¨ã®ä¼è©± äºæ¬¡å ã®æ空 äºæ¬¡å ã§ã¯ ç·ã¨ç·ã¯1ç¹ã§äº¤ãã ä¸æ¬¡å ã§ã¯ ç·ã¨ç·ã¯äº¤ããã¨ã¯éããªã é¢ã¨é¢ã¯ç·ã§äº¤ãã ç·ã¨é¢ã¯1ç¹ã§äº¤ãã ããããä¸è¬åããã¨ãD次å 㧠d1次å ã®å³å½¢ã¨d2次å ã®å³å½¢ã¯â¦
[ç®æ¬¡ã«æ»ã] æ ¸åå é¨ã§ã®ããã³ã·ã£ã« éåçã«ã¯ã©ãã ãã¤ããã³ã®åå¦çµå Next Highest? æ ¸åå é¨ã§ã®ããã³ã·ã£ã« (ä¸ã®å³ãæ£ç¢ºã«ã¯ç·ã¨çé¢ã®ãªãè§åº¦ãθã¨ããã¨ã¨ãã§ã) ä¸æ¬¡å ã§ãèãçæ®»ã«ä¸æ§ã«é»è·ãåå¸ãã¦ããæããã®å é¨ã§ã¯ã©ã®å ´æâ¦
ãã¨ã§èª¿ã¹ã¦ã¡ããã¨æ¸ãã¾ããã¨ããããï¼ SU(2) ã SO(3) ã«ãåãè¾¼ããã¨2対1ã§ååããããSO(3)ã§ã®720度å転ãSU(2)ã§ã®ãã«ã®å転ã«å¯¾å¿ ã群è«ãã¾ãããã¦ããã£ã¦ã®ã¯ãã®ã¸ãã®è©±ãã¨ã ç´°ããããã³ã ãã¾ã³ããã§ã«ããªã³ããã£ã¦ã®ã¯åºå£â¦
é·ãä¸æ§å ãã¿ãã¬æ³¨æï¼é·ãä¸æ§åã使ã£ã¦ãã¯ãçã«åºãããã§ãããããã¯ä¾ãã¦è¨ããªãã¯ã³ã®ã¤ã«ãããã¡ã絨毯ããåºã¦å¤ã®æµ·ã«èªåã®ã³ãã¼ãéãåºããããªããã§ãã絨毯ããã¾ãã¾å¹³é¢ã§ãªã端ãã¤ãªãã£ã¦åçã«ãªã£ã¡ãã£ã¦ã絨毯å®å®ãå¤ã«â¦
ã«ã¦ããã³ã»ãããã¯ã¼ã¯ çç©ã®éºä¼åã«ã¯é«ªãç®èãçèãªã©ãããã種é¡ã®ç´°èã®ä½ãæ¹ãæ¸ãã¦ããããç¶æ³ã«å¿ãã¦ã©ããä¸ã¤ã ããé¸ã°ãã¦å®éã«ä½ãããããã¨ãã°å¨ããç®èã®ç´°èã°ããã ã¨ãåå¦çãªããªã¬ã¼ã«ãã£ã¦ç®èãä½ãããã°ã©ã ã ããâ¦
"ã¯ã³ã®ã¿ã¤ã«"ã«ã¤ãã¦ã¯[ãã®ãã¼ã¸]ãåèã«ãªãã¾ããã ãã¨ãã¨ã¯ãã®ããºã«ã¨ãããè½ã¡ã²ã¼ã¿ãããªã«ã¼ã«ã§ç¡éã®ç©ºéãæ·ãè©°ãããã¨ãã§ããããã¨ããåé¡ãããããããããªãããã¨ã証æã§ãããã ãã©ãã©ããã£ã¦è¨¼æãããã¨ããã¨ãã¿ã¤â¦
ã³ãºãçè« ã²ãçè«ã®å ´åã空éãäºæ¬¡å ã ã¨ããã¨ãããåã h ã®å¯å¤©ã®æ¿ã«ãã¾ããããã£ã¦è©±ã§ãå¯å¤©ã®è£è¡¨ã®é¢ã¯ã¤ãªãã£ã¦ã¦ãç´ ç²åã¯ãã®å¯å¤©ã貫ãã¦ã糸ã ã¨ãã¾ããããã£ã¦è©±ãããããè£è¡¨ãã¤ãªãã£ã¦ããã§ä¸ããè¦ãã¨ç³¸ã¯ã¯ãã«ã«è¦ããâ¦
[ç®æ¬¡ã«æ»ã] ã¯ã¼ã ãã¼ã«ã¨è² ã®ã¨ãã«ã®ã¼ ä½åãªæ¬¡å ã®ã¤ã¡ã¼ã¸ ãã¯ãç ã¡ããã¨èãã¦ã¿ã ã³ãºãçè« ã¯ã¼ã ãã¼ã«ã¨è² ã®ã¨ãã«ã®ã¼ åéããã®è§£èª¬ã¨ãã ã¤ã¼ã¬ã³èªèº«ã®è§£èª¬ãåèã«ãªãã¾ãã æ®éã«ã¯ã¼ã ãã¼ã«ãä½ãã¨ãè² ã®æ²çããä½ããè² ã®â¦
é»è·ä¿å ã¯ã©ããªã£ã¦ãã§ãããããé»åã対æ¶æ» ããã¤ãã³ãã®å åéä¸ã«æ¥ãã¨ãé½é»åãä¸æ§åããªãã¨è¶ å ééä¿¡ãã§ãã¦ãã¾ããããæéå·®ãããããããªãã¨ã©ã®åº§æ¨ç³»ã§è¦ã¦ãå¤ã«ãªãã +- -+ + - - + + - - + + - - + + - - + + -- + + ** ** + â¦
[ç®æ¬¡ã«æ»ã] ç²åãã¶ã¤ãã¦æ¶ã ç²åã®ãã©ãã æéæ è¡ï¼ ï¼é·çï¼ ç²åãã¶ã¤ãã¦æ¶ã ç©è³ªåç©è³ªéã é»å(-)é½é»å(+)軽ã é½å(+)åé½å(-)éã FM(0)åFM(0)ãã¶ãéã ã³ãºãçè«ã§ã¯ãããããããªè¨ãæ¹ãããã¨ããã¤ãã¹é»è·ã®ç´ ç²åã¯ç©ºéãâ¦