èªåã§ç¸é¢ä¿æ°ã䏿°ã«è¨ç®ããããã±ã¼ã¸ã®ä¸ã¤ããµã³ãã«ãã¼ã¿ã¯mtcars
ãç¨ããã
data(mtcars) head(mtcars,5)
ãã¼ã¿ã
mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
vsã¨amã¯2å¤ã§ããããããã®2ã¤ãåãé¤ããåºåãpearsonã ãã«ããããã
dat <- subset(mtcars,select = (c(-vs, -am))) head(dat,5)
å å·¥å¾ãã¼ã¿ã
mpg cyl disp hp drat wt qsec gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 3 2
correlation()
ãªãã·ã§ã³ã2ã¤æå®ããã¦ãããæå³ã¯å¾æ®µãåç §ã®ãã¨ã
library(correlation) res <-correlation::correlation(dat, include_factors = TRUE, method = "auto" ) res
表示
# Correlation Matrix (auto-method) Parameter1 | Parameter2 | r | 95% CI | t(30) | p -------------------------------------------------------------------- mpg | cyl | -0.85 | [-0.93, -0.72] | -8.92 | < .001*** mpg | disp | -0.85 | [-0.92, -0.71] | -8.75 | < .001*** mpg | hp | -0.78 | [-0.89, -0.59] | -6.74 | < .001*** mpg | drat | 0.68 | [ 0.44, 0.83] | 5.10 | < .001*** mpg | wt | -0.87 | [-0.93, -0.74] | -9.56 | < .001*** mpg | qsec | 0.42 | [ 0.08, 0.67] | 2.53 | 0.137 mpg | gear | 0.48 | [ 0.16, 0.71] | 3.00 | 0.065 mpg | carb | -0.55 | [-0.75, -0.25] | -3.62 | 0.016* cyl | disp | 0.90 | [ 0.81, 0.95] | 11.45 | < .001*** cyl | hp | 0.83 | [ 0.68, 0.92] | 8.23 | < .001*** cyl | drat | -0.70 | [-0.84, -0.46] | -5.37 | < .001*** cyl | wt | 0.78 | [ 0.60, 0.89] | 6.88 | < .001*** cyl | qsec | -0.59 | [-0.78, -0.31] | -4.02 | 0.007** cyl | gear | -0.49 | [-0.72, -0.17] | -3.10 | 0.054 cyl | carb | 0.53 | [ 0.22, 0.74] | 3.40 | 0.027* disp | hp | 0.79 | [ 0.61, 0.89] | 7.08 | < .001*** disp | drat | -0.71 | [-0.85, -0.48] | -5.53 | < .001*** disp | wt | 0.89 | [ 0.78, 0.94] | 10.58 | < .001*** disp | qsec | -0.43 | [-0.68, -0.10] | -2.64 | 0.131 disp | gear | -0.56 | [-0.76, -0.26] | -3.66 | 0.015* disp | carb | 0.39 | [ 0.05, 0.65] | 2.35 | 0.177 hp | drat | -0.45 | [-0.69, -0.12] | -2.75 | 0.110 hp | wt | 0.66 | [ 0.40, 0.82] | 4.80 | < .001*** hp | qsec | -0.71 | [-0.85, -0.48] | -5.49 | < .001*** hp | gear | -0.13 | [-0.45, 0.23] | -0.69 | > .999 hp | carb | 0.75 | [ 0.54, 0.87] | 6.21 | < .001*** drat | wt | -0.71 | [-0.85, -0.48] | -5.56 | < .001*** drat | qsec | 0.09 | [-0.27, 0.43] | 0.50 | > .999 drat | gear | 0.70 | [ 0.46, 0.84] | 5.36 | < .001*** drat | carb | -0.09 | [-0.43, 0.27] | -0.50 | > .999 wt | qsec | -0.17 | [-0.49, 0.19] | -0.97 | > .999 wt | gear | -0.58 | [-0.77, -0.29] | -3.93 | 0.008** wt | carb | 0.43 | [ 0.09, 0.68] | 2.59 | 0.132 qsec | gear | -0.21 | [-0.52, 0.15] | -1.19 | > .999 qsec | carb | -0.66 | [-0.82, -0.40] | -4.76 | < .001*** gear | carb | 0.27 | [-0.08, 0.57] | 1.56 | 0.774 p-value adjustment method: Holm (1979) Observations: 32
write.csv()ã§ãã®ã¾ã¾æ¸ãåºãããã¨æã£ãã®ã ãããã¾ããããªãã£ãã
ã¨ãã£ã¿ã§|
ãã¿ããã³ã³ãã«å¤æãã¦ã空ç½ãã¤ã¶ãã°csvã¨ãã¦ä½¿ããããã¾ãç¾ãããªãã
ä»åã¯res
ã«æ ¼ç´ããããres
ã®ä¸èº«ã¨print()ã¨ã表示å
容ãç°ãªãã
summary()
summary()ã§åãã¨ããã«è¡¨ç¤ºå½¢å¼ãå¤ããã
summary(res)
表示
# Correlation Matrix (auto-method) Parameter | carb | gear | qsec | wt | drat | hp | disp | cyl ------------------------------------------------------------------------------------------------ mpg | -0.55* | 0.48 | 0.42 | -0.87*** | 0.68*** | -0.78*** | -0.85*** | -0.85*** cyl | 0.53* | -0.49 | -0.59** | 0.78*** | -0.70*** | 0.83*** | 0.90*** | disp | 0.39 | -0.56* | -0.43 | 0.89*** | -0.71*** | 0.79*** | | hp | 0.75*** | -0.13 | -0.71*** | 0.66*** | -0.45 | | | drat | -0.09 | 0.70*** | 0.09 | -0.71*** | | | | wt | 0.43 | -0.58** | -0.17 | | | | | qsec | -0.66*** | -0.21 | | | | | | gear | 0.27 | | | | | | | p-value adjustment method: Holm (1979)
ãªãã·ã§ã³
ä½¿ãæ¹
correlation( data, data2 = NULL, select = NULL, select2 = NULL, rename = NULL, method = "pearson", p_adjust = "holm", ci = 0.95, bayesian = FALSE, bayesian_prior = "medium", bayesian_ci_method = "hdi", bayesian_test = c("pd", "rope", "bf"), redundant = FALSE, include_factors = FALSE, partial = FALSE, partial_bayesian = FALSE, multilevel = FALSE, ranktransform = FALSE, winsorize = FALSE, verbose = TRUE, standardize_names = getOption("easystats.standardize_names", FALSE), ...)
data
ãã¼ã¿ãã¬ã¼ã ã
data2
ãªãã·ã§ã³ã®ãã¼ã¿ãã¬ã¼ã ãæå®ãããå ´åãdata 㨠data2 ã®å¤æ°éã®ãã¹ã¦ã®ãã¢ã¯ã¤ãºç¸é¢ãè¨ç®ãããã
select, select2
(data2 ãæå®ããã¦ããå ´åã¯ç¡è¦ãããã) ç¸é¢ã®ããã«é¸æãããã¹ã夿°ã®ãªãã·ã§ã³ã®ååãã ç¸é¢ãããã¹ããããã®å¤æ°ããã¼ã¿ãã¬ã¼ã ã«ä¸ãã代ããã«ã data ã¯ãã¼ã¿ãã¬ã¼ã ãselect 㨠select2 㯠data ã®å¤æ°ï¼åï¼ã®ï¼å¼ç¨ï¼åã¨ãããã¨ãã§ãããcorrelation() 㯠data[select] 㨠data[select2] ã®éã®ç¸é¢ãè¨ç®ããã select ã ããæå®ãããå ´åãselect 夿°éã®ãã¹ã¦ã®ãã¢ã¯ã¤ãºç¸é¢ãè¨ç®ããããããã¯ãcorrelation()ã®ããã¤ãã»ãã¬ã³ããªã¼ããªä»£æ¿æ¹æ³ã§ããï¼'Examples'ãåç §ï¼ã
rename
åºåããã夿°ã®ååã夿´ãããå ´åããããã®å¼æ°ã使ç¨ãã¦ãå¥ã®ååãæå®ãããã¨ãã§ãããååã®æ°ã¯ã鏿ãããåã®æ°ã¨åãã§ãªããã°ãªããªããã¨ã«æ³¨æãããããdata2 ãæå®ãããå ´åã¯ç¡è¦ãããã
method
æ¤å®ã«ä½¿ç¨ããç¸é¢ä¿æ°ã示ãæååã"pearson" (ããã©ã«ã), "kendall", "spearman" (ãã ã robust 弿°ãåç §), "biserial", "polychoric", "tetrachoric", "biweight", "distance", "percentage" (ãã¼ã»ã³ãæ²ãç¸é¢), "blomqvist" ã®ã©ãã1ã¤ãæå®ãããã (Blomqvist ã®ä¿æ°ã®ãã)ã"hoeffding" (Hoeffding ã® D )ã"gamma"ã"gaussian" (ã¬ã¦ã¹é ä½ç¸é¢)ã"shepherd" (ã·ã§ãã¼ãåå¨çç¸é¢)ã®ããããã鏿ãããauto "ãè¨å®ããã¨ãæãé©åãªæ¹æ³ï¼é åºè¦å ãå«ã¾ããå ´åã¯polychoricãäºé è¦å ãå«ã¾ããå ´åã¯tetrachoricãäºé ã¨é£ç¶ã®å ´åã¯point-biserialããã以å¤ã¯pearsonï¼ã鏿ãããã¨è©¦ã¿ãããããã®ææ¨ã®èª¬æã«ã¤ãã¦ã¯ã以ä¸ã®è©³ç´°ã»ã¯ã·ã§ã³ãåç §ã
p_adjust
é »åº¦è«çç¸é¢ã®è£æ£æ³ã"holm" (ããã©ã«ã), "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "somers", "none" ã®ãããããæå®ãããã¨ãã§ããã詳細㯠stats::p.adjust() ãåç §ï¼
ci
Confidence/Credible Interval levelï¼ä¿¡é ¼åºéã¬ãã«ï¼ï¼default "ã®å ´åã0.95 (95% CI)ã«è¨å®ãããã
bayesian
TRUE ã®å ´åããã¤ãºã®æ çµã¿ã§ç¸é¢ãå®è¡ããã
bayesian_prior
弿°ã® prior ã«ã¯ãããã¤ãã®ååãã¤ãã¦ããã"medium.narrow", "medium", "wide", "ultrawide "ã§ããããããã¯ããããã 1/sqrt(27), 1/3, 1/sqrt(3), 1 ã®ã¹ã±ã¼ã«å¤ã«å¯¾å¿ãããBayesFactor::correlationBF 颿°ãåç §ã
bayesian_ci_methodãbayesian_test
BayesFactor ã®ãã¹ãã«ã¤ãã¦ã¯ model_parameters() ã®å¼æ°ãåç §ã
redundant
ãã¼ã¿ã«åé·è¡ï¼ä¸ããããç¸é¢ã2åç¹°ãè¿ãããï¼ãå«ã¾ãã¦ãããã©ããã
include_factors
TRUE ã®å ´åãå åã¯ä¿æãããæçµçã«æ°å¤ã«å¤æãããããã©ã³ãã 广ã¨ãã¦ä½¿ç¨ãããï¼ãã«ãã¬ãã«ã«ä¾åï¼ãFALSEã®å ´åãå åã¯åãã£ã¦åãé¤ãããã
partial
é¨åç¸é¢ãåé¨åç¸é¢ããããã TRUE ã¾ã㯠"semi" ã¨ãããã¨ãã§ããã
partial_bayesian
ãã¤ãºã®æ çµã¿ã§é¨åç¸é¢ãæ±ããå ´åã¯ãpartial_bayesian ã TRUEã«è¨å®ããå®å ¨ãªãã¤ãºé¨åç¸é¢ãå¾ãå¿ è¦ãããã ããã§ãªãå ´åã¯ãæ¬ä¼¼ãã¤ãºåç¸é¢ï¼ã¤ã¾ããFrequentistã®é¨ååã«åºã¥ããã¤ãºåç¸é¢ï¼ãå¾ãããã
multilevel
TRUE ã®å ´åãå åã¯ã©ã³ãã å åã¨ãã¦å«ã¾ããã䏿¹ãFALSEï¼ããã©ã«ãï¼ã®å ´åããããã¯åå帰ã¢ãã«ã«ãããåºå®å¹æã¨ãã¦å«ã¾ããã
ranktransform
TRUE ã«ããã¨ãç¸é¢ãæ¨å®ããåã«å¤æ°ãé ä½å¤æãããããã¯ã極å¤ï¼å¤ãå¤ï¼ã«å¯¾ãã¦ããå¼·ãåæãè¡ãæ¹æ³ã®1ã¤ã§ãããä¾ãã°ãã©ã³ã¯å¤æããããã¼ã¿ã®ãã¢ã½ã³ã®ç¸é¢ã¯ãã¹ãã¢ãã³ã®é ä½ç¸é¢ã¨åçã§ãããã¨ã«æ³¨æã ãããã£ã¦ãrobust=TRUEã¨method="spearman"ã使ç¨ãããã¨ã¯åé·ã§ãããããããããã¯ç¸é¢ã®ããã¹ãæ§ãé«ããç°¡åãªãªãã·ã§ã³ã§ããããã¤ãºç¸é¢ããã«ãã¬ãã«Spearmanã®ãããªé ä½ç¸é¢ãå¾ãããã®æè»ãªæ¹æ³ã§ãããã
winsorize
ç¸é¢ããããããã¹ããã«ããï¼ã¤ã¾ããæ¥µå¤ã®å½±é¿ãæããï¼ããã²ã¨ã¤ã®æ¹æ³ãFALSEãã¾ãã¯å¿ è¦ãªãããå¤ã«å¯¾å¿ãã0~1 (ä¾:0.2)ã®æ°å¤ãæå®ã§ããã 詳細㯠winsorize() 颿°ãåç §ãã¦ãã ããã
verbose
è¦åããã°ã«ããã
standardize_names
ãã®ãªãã·ã§ã³ã TRUE ã«è¨å®ããã¨ãåºåã«å¯¾ã㦠insight::standardize_names() ãå®è¡ããæ¨æºåãããã«ã©ã åãåå¾ãããã¨ãã§ããããã®ãªãã·ã§ã³ã¯options(easystats.standardize_names = TRUE)ãå®è¡ãããã¨ã§ã°ãã¼ãã«ã«è¨å®ãããã¨ãå¯è½ã§ããã
ä»ã®ã¡ã½ããã«æ¸¡ã追å ã®å¼æ°(ä¾ãã°ã代æ¿)ã詳細ã¯stats::cor.testãåç §