idreã®è§£èª¬ããã
å¾åè¨è¼ããã¦ããparallel slopesã®æ¤å®ã ããç¾å¨ã¯brantããã±ã¼ã¸ã§ã§ããã®ã§ã¯ãªããã¨æãããã®ãã¡ã¨ã³ããªããããã¤ããã
ã¯ããã«
ãã®ãã¼ã¸ã§ã¯ãRã®porrããã±ã¼ã¸ã使ã£ã¦é åºãã¸ã¹ãã£ãã¯å帰ãè¡ãæ¹æ³ã説æããã çµæã®è§£éã«ã¤ãã¦ã®ããæ°å¦çãªåãæ±ãã«ã¤ãã¦ã¯ã以ä¸ãåç §ã https://stats.idre.ucla.edu/r/faq/ologit-coefficients/
æºå
ãã®ãã¼ã¸ã®ä¾é¡ãå®è¡ããåã«ã以ä¸ã®ããã±ã¼ã¸ããã¼ãã§ãããã¨ã確èªãããããã±ã¼ã¸ãã¤ã³ã¹ãã¼ã«ããã¦ããªãå ´åã¯ãinstall.packages("packagename")ãããã¼ã¸ã§ã³ãå¤ãå ´åã¯ãupdate.packages()ãå®è¡ããã
require(foreign) require(ggplot2) require(MASS) require(Hmisc) require(reshape2)
é åºãã¸ã¹ãã£ãã¯å帰ã®ä¾
ä¾1: ãããã¼ã±ãã£ã³ã°ã»ãªãµã¼ãä¼ç¤¾ãããã¡ã¼ã¹ããã¼ãã»ãã§ã¼ã³åºã§äººã ãæ³¨æããã½ã¼ãã®ãµã¤ãºï¼ã¹ã¢ã¼ã«ãããã£ã¢ã ãã©ã¼ã¸ãã¨ã¯ã¹ãã©ã©ã¼ã¸ï¼ã«å½±é¿ãä¸ããè¦å ã調æ»ãããã¨èãã¦ããããããã®è¦å ã«ã¯ã注æãããµã³ãã¤ããã®ç¨®é¡ï¼ãã³ãã¼ã¬ã¼ã¾ãã¯ããã³ï¼ããã©ã¤ãããããæ³¨æãããã©ãããæ¶è²»è ã®å¹´é½¢ãªã©ããããçµæå¤æ°ã§ããã½ã¼ãã®ãµã¤ãºã¯æããã«æ³¨æããã¦ãã¾ãããæ§ã ãªãµã¤ãºéã®å·®ã¯ä¸è²«ãã¦ããªããsmallã¨mediumã®å·®ã¯10ãªã³ã¹ãmediumã¨largeã®å·®ã¯8ãªã³ã¹ãlargeã¨extra largeã®å·®ã¯12ãªã³ã¹ã¨ãªã£ã¦ããã
ä¾2ï¼ããç ç©¶è ã¯ããªãªã³ããã¯ã®æ°´æ³³ã§ã¡ãã«ç²å¾ã«å½±é¿ãä¸ããè¦å ã¯ä½ãã«èå³ãæã£ã¦ãããé¢é£ããäºæ¸¬å åã«ã¯ããã¬ã¼ãã³ã°æéãé£äºãå¹´é½¢ãã¢ã¹ãªã¼ãã®æ¯å½ã§ã®æ°´æ³³äººæ°ãªã©ããããç ç©¶è ã¯ãéã¡ãã«ã¨éã¡ãã«ã®éã®è·é¢ã¯ãéã¡ãã«ã¨é ã¡ãã«ã®éã®è·é¢ããã大ããã¨èãã¦ããã
ä¾3ï¼ããç ç©¶ã§ã¯ã大å¦é¢ã«åºé¡ãããã©ããã®å¤æã«å½±é¿ãä¸ããè¦å ã調ã¹ã¦ããã大å¦3å¹´çã«ã大å¦é¢ã«åºé¡ããå¯è½æ§ãä½ãããããé«ãããé常ã«é«ãããå°ããããããã£ã¦ãçµæå¤æ°ã¯3ã¤ã®ã«ãã´ãªã¼ã«ãªããã¾ããè¦ªã®æè²ç¶æ³ãå¦é¨ãå ¬ç«ãç§ç«ããç¾å¨ã®GPAãªã©ã®ãã¼ã¿ãåéãã¦ããããã®3ã¤ã®ãã¤ã³ãéã®ãè·é¢ãã¯çãããªãã¨ç ç©¶è ã¯èãã¦ãããä¾ãã°ããå¯è½æ§ãä½ããã¨ãããå¯è½æ§ãé«ããã®éã®ãè·é¢ãã¯ããããå¯è½æ§ãé«ããã¨ãé常ã«å¯è½æ§ãé«ããã®éã®è·é¢ãããçããããããªãã
ãã¼ã¿ã®èª¬æ
以ä¸ã®ãã¼ã¿åæã§ã¯ã大å¦é¢ã¸ã®åºé¡ã«é¢ããä¾3ãæ¡å¤§ãã¦èª¬æããããã®ä¾ã®ããã«ããã¤ãã®ãã¼ã¿ãã·ãã¥ã¬ã¼ããã¦ãããããã¯å½ç¤¾ã®ã¦ã§ããµã¤ãããå ¥æã§ããã
dat <- read.dta("https://stats.idre.ucla.edu/stat/data/ologit.dta") head(dat)
apply pared public gpa 1 very likely 0 0 3.26 2 somewhat likely 1 0 3.21 3 unlikely 1 1 3.94 4 somewhat likely 0 0 2.81 5 somewhat likely 0 0 2.53 6 unlikely 0 1 2.59
ãã®ä»®æ³ãã¼ã¿ã»ããã«ã¯ã"apply "ã¨ãã3段éã®å¤æ°ãããã"unlikely"ã"therely likely"ã"very likely"ã®3段éã§ããããã1ã2ã3ã¨ã³ã¼ãããã¦ããããããçµæå¤æ°ã¨ãã¦ä½¿ç¨ãããã¾ããäºæ¸¬å¤æ°ã¨ãã¦ãparedï¼è¦ªã®ãã¡å°ãªãã¨ãä¸äººã大å¦é¢åã§ãããã¨ã示ã0/1ã®å¤æ°ï¼ãpublicï¼å¦é¨ãå ¬ç«ã§ãããã¨ã示ã1ãç§ç«ã§ãããã¨ã示ã0ã®0/1ã®å¤æ°ï¼ãgpaï¼å¦çã®æç¸¾å¹³åå¤ï¼ã®3ã¤ã®å¤æ°ãç¨æãããã¾ãããããã®å¤æ°ã®è¨è¿°çµ±è¨ãè¦ã¦ã¿ããã
lapply(dat[, c("apply", "pared", "public")], table)
$apply unlikely somewhat likely very likely 220 140 40 $pared 0 1 337 63 $public 0 1 343 57
ftable(xtabs(~ public + apply + pared, data = dat))
pared 0 1 public apply 0 unlikely 175 14 somewhat likely 98 26 very likely 20 10 1 unlikely 25 6 somewhat likely 12 4 very likely 7 3
summary(dat$gpa)
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.900 2.720 2.990 2.999 3.270 4.000
sd(dat$gpa)
[1] 0.3979409
ã¾ããå¿åã¬ãã«ãã¨ã®æç¸¾è©ä¾¡ã®åå¸ããå ¬é度ã¨å ¬é度ã«åãã¦èª¿ã¹ããã¨ãã§ãããããã«ããã2Ã2ã®ã°ãªããã«ããparedãã¨ãpublicãã®ç¹å®ã®å¤ã«ã¤ãã¦ããapplyãã®åã¬ãã«ã®æç¸¾ãç®±ã²ãå³ã«ãã¦ããããã¼ã¿ãè¦ãããããããã«ãç®±ã²ãå³ã®ä¸ã«çã®ãã¼ã¿ãã¤ã³ãã追å ããç®±ã²ãå³ãå§åããªãããã«ãå°éã®ãã¤ãºï¼ãã°ãã°ãã¸ãã¿ã¼ãã¨å¼ã°ãã¾ãï¼ã¨50ï¼ ã®éæåº¦ãå ãã¾ãããæå¾ã«ãã»ã«ã«å ãã¦ããã¹ã¦ã®ãã¼ã¸ãã«é¢ä¿ããããããããä½ç½ããããã¨ã§ãæçµçã«3Ã3ã®ã°ãªãããã§ãããããå³ä¸ã«ããã®ã¯ããå¿åãã¨ãæç¸¾ãã®å ¨ä½çãªé¢ä¿ã§ããããã«æ£ã®å¤ã示ãã¦ãããããã«ã¯ ggplot2 ããã±ã¼ã¸ã使ãã
ggplot(dat, aes(x = apply, y = gpa)) + geom_boxplot(size = .75) + geom_jitter(alpha = .5) + facet_grid(pared ~ public, margins = TRUE) + theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
æ³å®ãããè§£ææ¹æ³
ããã§ã¯ãçæ§ãééãããã¨ã®ããåææ¹æ³ãããã¤ãç´¹ä»ãããããã«æããæ¹æ³ã®ä¸ã«ã¯é常ã«åççãªãã®ãããã°ãå»ãã¦ãã¾ã£ããã®ãéçã®ãããã®ãããã
- é åºä»ããã¸ã¹ãã£ãã¯å帰ï¼ãã®ãã¼ã¸ã®ç¦ç¹ã§ããã
- OLSå帰ã§ãããã®åæã¯ã鿥åå½¢ã®çµæå¤æ°ã§ä½¿ç¨ãããå ´åãOLSã®ä»®å®ãç ´ãããã®ã§åé¡ãããã¾ãã
- ANOVA: 1ã¤ã®é£ç¶äºæ¸¬å¤æ°ã®ã¿ã使ç¨ããå ´åãã¢ãã«ããå転ãããã¦ããã¨ãã°ãgpaãçµæå¤æ°ã§ãapplyãäºæ¸¬å¤æ°ã«ãªãããã«ãããã¨ãã§ãã¾ããããã¦ãä¸å é ç½®ã®ANOVAãå®è¡ãããã¨ãã§ããããã¯ãï¼ãã¸ã¹ãã£ãã¯ã»ã¢ãã«ããã®ï¼äºæ¸¬å¤æ°ã1ã¤ã ãã§ããããé£ç¶çã§ããå ´åã«ã¯ãæªããã¨ã§ã¯ãªãã
- å¤é ãã¸ã¹ãã£ãã¯å帰ãããã¯ï¼çµæå¤æ°ã®ã«ãã´ãªã«é åºããªãï¼ããªãã¡ï¼ã«ãã´ãªãåç®çã§ããï¼ã¨ä»®å®ããããã¨ãé¤ãã¦ï¼é åºä»ããã¸ã¹ãã£ãã¯å帰ãè¡ããã¨ã«ä¼¼ã¦ããããã®ã¢ããã¼ãã®æ¬ ç¹ã¯ãé åºã«å«ã¾ããæ å ±ã失ããããã¨ã§ããã
- é åºä»ããããããå帰ãããã¯ãé åºä»ããã¸ã¹ãã£ãã¯å帰ãå®è¡ããã®ã¨é常ã«ããä¼¼ã¦ãã¾ãã主ãªéãã¯ãä¿æ°ã®è§£éã«ããã
é åºãã¸ã¹ãã£ãã¯å帰
以ä¸ã§ã¯ãMASSããã±ã¼ã¸ã®porrã³ãã³ãã使ã£ã¦ãé åºä»ããã¸ã¹ãã£ãã¯å帰ã¢ãã«ãæ¨å®ããããã®ã³ãã³ãåã¯ãæ¯ä¾ãªããºã»ãã¸ã¹ãã£ãã¯å帰ã«ç±æ¥ãã¦ããããã®ã¢ãã«ã«ãããæ¯ä¾ãªããºã®ä»®å®ã強調ãã¦ãããã¾ããHess=TRUEãæå®ãããã¨ã§ãã¢ãã«ãæé©åã«ãã観測ãããæ å ±è¡åï¼ãã·ã¢ã³Hessianã¨å¼ã°ããï¼ãè¿ããæ¨æºèª¤å·®ãå¾ãããã«ä½¿ç¨ãããã
å®ç¾©
ä¿æ°ã®è§£éæ¹æ³ãçè§£ããããã«ãã¾ãããã¤ãã®è¡¨è¨æ³ã確ç«ããé åºãã¸ã¹ãã£ãã¯å帰ã«é¢é£ããæ¦å¿µã確èªãã¾ããããã
åã®ã«ãã´ãªãæã¤é åºçµæã¨ããï¼ããã¦ï¼
ã¯ï¼
ãç¹å®ã®ã«ãã´ãª
以ä¸ã§ããç´¯ç©ç¢ºçã§ããï¼ç¹å®ã®ã«ãã´ãªä»¥ä¸ã§ãããã¨ã®ãªããºã¯ã次ã®ããã«å®ç¾©ã§ããã
ã§
ã§ãããã¼ãã§å²ãã®ã¯ä¸å®ã§ããã対æ°ãªããºã¯ãã¸ããã¨ãå¼ã°ããã
Rã®polrã§ã¯ãé åºãã¸ã¹ãã£ãã¯å帰ã¢ãã«ã¯æ¬¡ã®ããã«ãã©ã¡ã¼ã¿åãããã
ããã¦ã次ã®ãããªé åºãã¸ã¹ãã£ãã¯å帰ã¢ã¼ãã«é©åããããã¨ãã§ããã
## fit ordered logit model and store results 'm' m <- polr(apply ~ pared + public + gpa, data = dat, Hess=TRUE) ## view a summary of the model summary(m)
Call: polr(formula = apply ~ pared + public + gpa, data = dat, Hess = TRUE) Coefficients: Value Std. Error t value pared 1.04769 0.2658 3.9418 public -0.05879 0.2979 -0.1974 gpa 0.61594 0.2606 2.3632 Intercepts: Value Std. Error t value unlikely|somewhat likely 2.2039 0.7795 2.8272 somewhat likely|very likely 4.2994 0.8043 5.3453 Residual Deviance: 717.0249 AIC: 727.0249
æ¨å®ã¢ãã«ã¯æ¬¡ã®ããã«æ¸ããã¨ãã§ããã
ä¸ã®åºåã§ã¯ã次ã®ããã«ãªã£ã¦ããã
- ããã¯Rããå®è¡ããã¢ãã«ã®ç¨®é¡ãæå®ãããªãã·ã§ã³ãªã©ãæãåºããã¦ããããã®ã§ããã
- 次ã«ãåä¿æ°ã®å¤ãæ¨æºèª¤å·®ãtå¤ï¼åç´ã«ä¿æ°ã¨ãã®æ¨æºèª¤å·®ã®æ¯ï¼ãå«ãé常ã®å帰åºåä¿æ°è¡¨ã表示ããããããã©ã«ãã§ã¯ææå·®æ¤å®ã¯ãªãã
- 次ã«ãã«ãããã¤ã³ãã¨ãå¼ã°ãã2ã¤ã®åçã®æ¨å®å¤ã表示ããããåçã¯ããã¼ã¿ã§è¦³å¯ããã3ã¤ã®ã°ã«ã¼ããä½ãããã«æ½å¨å¤æ°ãã©ãã§ã«ããããããã示ãããã®æ½å¨å¤æ°ã¯é£ç¶ã§ãããã¨ã«æ³¨æãä¸è¬çã«ããããã¯çµæã®è§£éã«ã¯ä½¿ç¨ãããªããã«ãããã¤ã³ãã¯ãä»ã®çµ±è¨ããã±ã¼ã¸ã§å ±åããããããå¤ã¨å¯æ¥ã«é¢é£ãã¦ããã
- æå¾ã«ãã¢ãã«ã®æ®å·®åæ£ã-2 * Log Likelihoodãããã³AICã表示ããã¾ããæ®å·®åæ£ã¨AICã¯ãã¢ãã«ã®æ¯è¼ã«å½¹ç«ã¤ã
på¤ããªãã¨æºè¶³ã§ããªã人ããã¾ãããã®å ´åãpå¤ãè¨ç®ããä¸ã¤ã®æ¹æ³ã¯ãzæ¤å®ã®ããã«ãtå¤ãæ¨æºæ£è¦åå¸ã¨æ¯è¼ãããã¨ã§ããããã¡ãããããã¯èªç±åº¦ãç¡éã«ããå ´åã«ã®ã¿å½ã¦ã¯ã¾ãã¾ããã大ããªãµã³ãã«ã§ã¯åççã«è¿ä¼¼ããããµã³ãã«ãµã¤ãºãå°ãããªãã¨ã¾ãã¾ãåãã大ãããªãããã®æ¹æ³ã¯ãStataãªã©ã®ä»ã®ã½ããã¦ã§ã¢ããã±ã¼ã¸ã§ã使ç¨ããã¦ãããç°¡åã«è¡ããã¨ãã§ãããã¾ããä¿æ°è¡¨ãä¿åããæ¬¡ã«på¤ãè¨ç®ãã¦è¡¨ã«æ»ãã
## store table (ctable <- coef(summary(m)))
Value Std. Error t value pared 1.04769010 0.2657894 3.9418050 public -0.05878572 0.2978614 -0.1973593 gpa 0.61594057 0.2606340 2.3632399 unlikely|somewhat likely 2.20391473 0.7795455 2.8271792 somewhat likely|very likely 4.29936315 0.8043267 5.3452947
## calculate and store p values p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2 ## combined table (ctable <- cbind(ctable, "p value" = p))
Value Std. Error t value p value pared 1.04769010 0.2657894 3.9418050 8.087072e-05 public -0.05878572 0.2978614 -0.1973593 8.435464e-01 gpa 0.61594057 0.2606340 2.3632399 1.811594e-02 unlikely|somewhat likely 2.20391473 0.7795455 2.8271792 4.696004e-03 somewhat likely|very likely 4.29936315 0.8043267 5.3452947 9.027008e-08
ã¾ãããã©ã¡ã¼ã¿æ¨å®å¤ã®ä¿¡é ¼åºéãå¾ããã¨ãã§ããããããã¯ãå°¤åº¦é¢æ°ããããã¡ã¤ãªã³ã°ããããæ¨æºèª¤å·®ã使ç¨ãã¦æ£è¦åå¸ãä»®å®ãããã¨ã§å¾ãããããããã¡ã¤ãªã³ã°ãããCIã¯å¯¾ç§°ã§ã¯ãªããã¨ã«æ³¨æï¼é常ã¯å¯¾ç§°ã«è¿ããï¼ã95% CIã0ã¨äº¤å·®ããªãå ´åããã©ã¡ã¼ã¿æ¨å®å¤ã¯çµ±è¨çã«ææã§ããã
(ci <- confint(m)) # default method gives profiled CIs
2.5 % 97.5 % pared 0.5281768 1.5721750 public -0.6522060 0.5191384 gpa 0.1076202 1.1309148
confint.default(m) # CIs assuming normality
2.5 % 97.5 % pared 0.5267524 1.5686278 public -0.6425833 0.5250119 gpa 0.1051074 1.1267737
paredã¨gpaã®CIã«ã¯0ãå«ã¾ãã¦ããªããpublicã«ã¯å«ã¾ãã¦ãããåºåã®æ¨å®å¤ã¯ãé åºä»ããã¸ããï¼é åºä»ã対æ°ãªããºï¼ã®åä½ã§ä¸ãããããparedã«ã¤ãã¦ã¯ãã¢ãã«å ã®ä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã¨ããå ´åãparedã1åä½å¢å ããï¼ã¤ã¾ãã0ãã1ã«ãªãï¼ã¨ã対æ°ãªããºã¹ã±ã¼ã«ã§ã®é©ç¨ã®æå¾ å¤ã1.05å¢å ããã¨äºæ³ããããgpaã«ã¤ãã¦ã¯ãã¢ãã«å ã®ä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã¨ããå ´åãgpaã1åä½å¢å ããã¨ã対æ°ãªããºã¹ã±ã¼ã«ã§ã®ãå¿åãã®æå¾ å¤ã0.62å¢å ããã¨äºæ³ãããã
ãã®ã¢ãã«ã®ä¿æ°ã¯ã対æ°ã§ã¹ã±ã¼ã«ããã¦ããã®ã§ãè§£éãããé£ãããããããªãããã¸ã¹ãã£ãã¯å帰ã¢ãã«ãè§£éããå¥ã®æ¹æ³ã¯ãä¿æ°ããªããºæ¯ã«å¤æãããã¨ã§ãããORã¨ä¿¡é ¼åºéãå¾ãã«ã¯ãæ¨å®å¤ã¨ä¿¡é ¼åºéãææ°åããã ãã§ããã
## odds ratios exp(coef(m))
pared public gpa 2.8510579 0.9429088 1.8513972
## OR and CI exp(cbind(OR = coef(m), ci))
OR 2.5 % 97.5 % pared 2.8510579 1.6958376 4.817114 public 0.9429088 0.5208954 1.680579 gpa 1.8513972 1.1136247 3.098490
ãããã®ä¿æ°ã¯æ¯ä¾ãªããºæ¯ã¨å¼ã°ããäºå¤ãã¸ã¹ãã£ãã¯å帰ã®ãªããºæ¯ã¨ã»ã¼åãããã«è§£éããã
ãªããºæ¯ã®è§£é
確çã®å®ç¾©æ¹æ³ã¨ãªããºã®æ¹åæ§ã«åºã¥ãã¦ããªããºæ¯ã«ã¯å¤ãã®åçã®è§£éãããã詳細ãªèª¬æã«ã¤ãã¦ã¯ä¸è¨ãåç §ã https://stats.idre.ucla.edu/r/faq/ologit-coefficients/
以ä¸ã®(*)è¨å·ã¯ã鏿è¢ã®ä¸ã§æãç°¡åãªè§£éã示ãã¦ããã
è¦ªã®æè²
- (*) 両親ã大å¦ã«éã£ã¦ããå¦çã¯ãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã«ããå ´åã両親ã大å¦ã«éã£ã¦ããªãå¦çã«æ¯ã¹ã¦ãå¿åããå¯è½æ§ãé«ãï¼é常ã«é«ããã¾ãã¯ããé«ã対ä½ãï¼ãªããºã2.85åã«ãªãã
- 両親ã大å¦ã«éã£ã¦ããªãå¦çã®å ´åãåºé¡ããå¯è½æ§ãä½ãï¼ã¤ã¾ããå¯è½æ§ãä½ã対ããé«ããã¾ãã¯é常ã«é«ãï¼ãªããºã¯ãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã«ãã¦ã両親ã大å¦ã«éã£ã¦ããå¦çã®2.85åã«ãªãã
妿 ¡ã®ç¨®é¡
- å ¬ç«å¦æ ¡ã®çå¾ã¯ãç§ç«å¦æ ¡ã®çå¾ã«æ¯ã¹ã¦ãä»ã®ãã¹ã¦ã®å¤æ°ãåãã«ãã¦ããå¿åããå¯è½æ§ãé«ãï¼ã¤ã¾ããé常ã«ã¾ãã¯ããé«ãå¯è½æ§ã¨ä½ãå¯è½æ§ï¼ãªããºã¯5.71ï¼ ä½ãï¼ã¤ã¾ããï¼1 -0.943ï¼Ã100ï¼ ï¼ã
- (*) ç§ç«å¦æ ¡ã®çå¾ã¯ãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã¨ããå ´åãå ¬ç«å¦æ ¡ã®çå¾ã®1.06å[ããªãã¡ã1/0.943]ã®å¿åå¯è½æ§ãããï¼æ£ã®ãªããºæ¯ï¼ã
- ç§ç«å¦æ ¡ã®çå¾ã®å ´åãä»ã®ãã¹ã¦ã®å¤æ°ãåãã«ãã¦ãå¿åããå¯è½æ§ãä½ãï¼ã¤ã¾ããå¯è½æ§ãä½ãã¨æãããããå¯è½æ§ãé«ãããé常ã«å¯è½æ§ãé«ããï¼ç¢ºçã¯ãå ¬ç«å¦æ ¡ã®çå¾ããã5.71%ä½ãã
- å ¬ç«å¦æ ¡ã®çå¾ã®å ´åãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã¨ããå ´åãå¿åããå¯è½æ§ãä½ãã¨ãããªããºã¯ãç§ç«å¦æ ¡ã®çå¾ã®1.06åã«ãªãï¼æ£ã®ãªããºæ¯ï¼ã
GPA
- (*) å¦çã®GPAã1åä½å¢å ãããã¨ã«ãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã«ããã¾ã¾ãå¿åããå¯è½æ§ãé«ããªã確çï¼é常ã«ã¾ãã¯ããé«ãå¯è½æ§ã¨ä½ãå¯è½æ§ï¼ã1.85åã«ãªãï¼ã¤ã¾ãã85ï¼ å¢å ï¼ã
- å¦çã®GPAã1åä½ä¸ãããã¨ã«ãå¿åããå¯è½æ§ãä½ããªã確çï¼å¯è½æ§ãä½ãã¨ããé«ããã¾ãã¯é常ã«é«ãï¼ã¯ãä»ã®ãã¹ã¦ã®å¤æ°ãä¸å®ã«ãã¦ã1.85åã«ãªãã
æ¯ä¾ãªããºã®ä»®å®
é åºãã¸ã¹ãã£ãã¯ï¼ããã³é åºãããããï¼å帰ã®åºç¤ã¨ãªãä»®å®ã®1ã¤ã¯ï¼çµæã°ã«ã¼ãã®åãã¢ã®éã®é¢ä¿ãåãã§ãããã¨ã§ããï¼è¨ãæããã¨ï¼é åºãã¸ã¹ãã£ãã¯å帰ã¯ï¼ãã¨ãã°ï¼å¿ç夿°ã®æãä½ãã«ãã´ãªã¨ãã¹ã¦ã®é«ãã«ãã´ãªã®éã®é¢ä¿ãè¨è¿°ããä¿æ°ãï¼æ¬¡ã«ä½ãã«ãã´ãªã¨ãã¹ã¦ã®é«ãã«ãã´ãªã®éã®é¢ä¿ãè¨è¿°ããä¿æ°ã¨åãã§ãããã¨ãä»®å®ãããããã¯ãæ¯ä¾ãªããºã®ä»®å®ã¾ãã¯å¹³è¡å帰ã®ä»®å®ã¨å¼ã°ãã¦ãã¾ãããã¹ã¦ã®ã°ã«ã¼ãã®ãã¢ã®éã®é¢ä¿ã¯åããªã®ã§ãä¿æ°ã®ã»ããã¯1ã¤ã ãã§ããã
ããããã§ãªããã°ãçµæã°ã«ã¼ãã®åãã¢éã®é¢ä¿ãè¨è¿°ããããã«ãã¢ãã«å ã«ç°ãªãä¿æ°ã®ã»ãããå¿ è¦ã«ãªãããããã£ã¦ãã¢ãã«ã®å¦¥å½æ§ãè©ä¾¡ããããã«ã¯ãæ¯ä¾ãªããºã®ä»®å®ãæå¹ã§ãããã©ãããè©ä¾¡ããå¿ è¦ãããããããè¡ãããã®çµ±è¨çæ¤å®ã¯ãããã¤ãã®ã½ããã¦ã§ã¢ããã±ã¼ã¸ã§æä¾ããã¦ããããããããããã®æ¤å®ã¯ã帰ç¡ä»®èª¬ï¼ä¿æ°ã®ã»ãããåãã§ããã¨ããï¼ãæ£å´ããå¾åãããããããã£ã¦ãå¹³è¡ã¹ãã¼ãparallel slopesã®ä»®å®ãæãç«ã¤å ´åã«ã¯ããã®ä»®å®ãæãç«ããªããã¨ã示ãã¦ããã¨æ¹å¤ããã¦ããï¼Harrell 2001 p.335åç §ï¼ãå¹³è¡ã¹ãã¼ãã®ä»®å®ãæ¤è¨¼ããããã«ä¸è¬çã«ä½¿ç¨ããããã¹ããå®è¡ããæ©è½ãRã§è¦ã¤ãããã¨ãã§ããªãã£ããããããHarrellã¯å¹³è¡ã¹ãã¼ãã®ä»®å®ãè©ä¾¡ããããã®ã°ã©ãææ³ãæ¨å¥¨ãã¦ããããã®ã°ã©ãã«è¡¨ç¤ºããã¦ããå¤ã¯ãåºæ¬çã«ãã¸ããã¢ãã«ããã®ï¼ç·å½¢ï¼äºæ¸¬å¤ã§ãããäºæ¸¬å¤æ°ï¼xï¼ãä¸åº¦ã«1ã¤ä½¿ç¨ãã¦ãyãï¼yã®åã¬ãã«ã«ã¤ãã¦ï¼ä¸ããããå¤ä»¥ä¸ã§ãã確çãã¢ãã«ããããã«ä½¿ç¨ãããããã®ã°ã©ãã使ããã«ã¯ãHmiscã©ã¤ãã©ãªãå¿ è¦ã§ããã
以ä¸ã®ã³ã¼ãã«ã¯2ã¤ã®ã³ãã³ããå«ã¾ãã¦ããï¼æåã®ã³ãã³ãã¯è¤æ°è¡ã«åããã¦ãã¾ãï¼ãæ¯ä¾ãªããºã®ä»®å®ãæ¤è¨¼ããããã«ãã®ã°ã©ãã使ããã®ã«ä½¿ç¨ãããã¾ããåºæ¬çã«ãæã ã¯ãçµæã°ã«ã¼ãã apply >= 2 㨠apply >= 3ã®ã©ã¡ããã§å®ç¾©ãããåä¸ã®äºæ¸¬å¤æ°ãæã¤åã ã®ãã¸ã¹ãã£ãã¯å帰ããã®äºæ¸¬ããããã¸ãããã°ã©ãåããã äºæ¸¬å¤æ°ã®ãã¾ãã¾ãªã¬ãã«ããã¨ãã°paredã®äºæ¸¬ããããã¸ããã®å·®ããçµæã apply >= 2 ã¾ã㯠apply >= 3ã§å®ç¾©ããããã©ããã«ãããããåãã§ããã°ãæã ã¯æ¯ä¾ãªããºä»®å®ãæãç«ã¤ãã¨ã確信ã§ãããè¨ãæããã°ãpared = 0 㨠pared = 1 ã®ãã¸ããã®å·®ããçµæã apply >= 2 ã®ã¨ãã®å·®ã¨ apply >= 3 ã®ã¨ãã®å·®ãåãã§ããã°ãæ¯ä¾ãªããºã®ä»®å®ãæãç«ã¤å¯è½æ§ãé«ãã¨ãããã¨ã§ããã
æåã®ã³ãã³ãã¯ãã°ã©ãåãããå¤ãæ¨å®ãã颿°ã使ããããã®ã³ãã³ãã®æåã®è¡ã§ã¯ãRã«sfã颿°ã§ãããã¨ããã®é¢æ°ãyã¨ããã©ãã«ã®ã¤ãã1ã¤ã®å¼æ°ãåããã¨ãä¼ãã¦ãããsf颿°ã¯ã対象ã¨ãªã夿°ã®åå¤ããã大ãããçãããã®å¯¾æ°ãªããºãè¨ç®ãããæã ã®ç®çã§ã¯ã2以ä¸ã«é©ç¨ããã対æ°ãªããºã¨3以ä¸ã«é©ç¨ããã対æ°ãªããºãæ±ãããå¾å±å¤æ°ã®ã«ãã´ãªã®æ°ã夿°ã®ã³ã¼ãã£ã³ã°ã«ãã£ã¦ã¯ããã®é¢æ°ãç·¨éããå¿ è¦ããããããããªããä¸è¨ã®é¢æ°ã¯ã1, 2, 3ã®3ã¤ã®ã¬ãã«ãæã¤y夿°ã®ããã«æ§æããã¦ãããå¾å±å¤æ°ã1, 2, 3, 4ã¨ãã4ã¤ã®ã¬ãã«ãæã¤å ´åã'Y>=4'=qlogis(mean(y >= 4)) ã追å ããå¿ è¦ããããå¼ç¨ç¬¦ãé¤ãã¦ï¼æåã®æ¬å¼§ã®ä¸ã«è¿½å ããå¿ è¦ããããå¾å±å¤æ°ã®ã³ã¼ãã1, 2, 3ã§ã¯ãªã0, 1, 2ã ã£ãå ´åã¯ãã³ã¼ããç·¨éãã¦ã1ã®åã¤ã³ã¹ã¿ã³ã¹ã0ã«ã2ã1ã«ãã¨ããããã«ç½®ãæããå¿ è¦ãããã¾ããsf颿°ã®ä¸ã«ã¯ã確çããã¸ããã«å¤æããqlogis颿°ããããã¤ã¾ããåºæ¬çã«ã¯ãé©ç¨ããã確çã2ã3ããã大ãããã¨ãqlogisã«ä¸ãããããã®ç¢ºçã®ãã¸ãã夿ãè¿ããqlogis颿°ã®å é¨ã§ã¯ãy >= 2ã®å¹³åã®å¯¾æ°ãªããºãå¿ è¦ã§ãããã¨ããããã颿° sf ã« apply ã®ãã㪠y 弿°ãä¸ããã¨ãy >= 2 㯠0/1 (FALSE/TRUE) ã®ãã¯ãã«ã«è©ä¾¡ããããã®ãã¯ãã«ã®å¹³åãåããã¨ã§ apply >= 2 ã®å²åã¾ãã¯ç¢ºçãå¾ãããã
以ä¸ã®2ã¤ç®ã®ã³ãã³ãã¯ãäºæ¸¬å åã«ãã£ã¦å®ç¾©ããããã¼ã¿ã®ããã¤ãã®ãµãã»ããã«å¯¾ãã¦ã颿°sfãå¼ã³åºãã¾ãããã®ã¹ãã¼ãã¡ã³ãã§ã¯ãæåã®å¼æ°ã¨ãã¦å¼ãä¸ããããsummary颿°ãè¦ããããRã¯ãæ°å¼ã®å¼æ°ãæã¤summaryã®å¼ã³åºããè¦ãã¨ãæ°å¼ã®å³å´ã®ã°ã«ã¼ãã«ããæ°å¼ã®å·¦å´ã®å¤æ°ã®è¨è¿°çµ±è¨éãè¨ç®ãããã®çµæãããããªè¡¨ã«ãã¦è¿ããããã©ã«ãã§ã¯ãsummary ã¯å·¦è¾ºã®å¤æ°ã®å¹³åãè¨ç®ãã¾ããã¤ã¾ããsummary(as.numeric(apply) ~ pared + public + gpa) ã¨ããã³ã¼ãã fun 弿°ãªãã§ä½¿ç¨ããå ´åãapply ã pared ã§ã次㫠public ã§ãæå¾ã« gpa ã§ 4 çåããå¹³åå¤ãå¾ããã¨ãã§ãããããããç¬èªã®é¢æ°ãã¤ã¾ãsfãfun=弿°ã«ä¸ãããã¨ã§ãå¹³åå¤ã®è¨ç®ã䏿¸ããããã¨ãã§ãã¾ããæå¾ã®ã³ãã³ãã¯ãRã«ãªãã¸ã§ã¯ãsã®å 容ãè¿ãããã«è¦æ±ããããããã¯ãã¼ãã«ã§ãã
sf <- function(y) { c('Y>=1' = qlogis(mean(y >= 1)), 'Y>=2' = qlogis(mean(y >= 2)), 'Y>=3' = qlogis(mean(y >= 3))) } (s <- with(dat, summary(as.numeric(apply) ~ pared + public + gpa, fun=sf)))
as.numeric(apply) N= 400 +-------+-----------+---+----+-----------+---------+ | | | N|Y>=1| Y>=2| Y>=3| +-------+-----------+---+----+-----------+---------+ | pared| No|337| Inf|-0.37833644|-2.440735| | | Yes| 63| Inf| 0.76546784|-1.347074| +-------+-----------+---+----+-----------+---------+ | public| No|343| Inf|-0.20479441|-2.345006| | | Yes| 57| Inf|-0.17589067|-1.547563| +-------+-----------+---+----+-----------+---------+ | gpa|[1.90,2.73)|102| Inf|-0.39730180|-2.772589| | |[2.73,3.00)| 99| Inf|-0.26415158|-2.302585| | |[3.00,3.28)|100| Inf|-0.20067070|-2.090741| | |[3.28,4.00]| 99| Inf| 0.06062462|-1.803594| +-------+-----------+---+----+-----------+---------+ |Overall| |400| Inf|-0.20067070|-2.197225| +-------+-----------+---+----+-----------+---------+
ä¸ã®è¡¨ã¯ãå¹³è¡ã¹ãã¼ãã®ä»®å®ãªãã§ãå¾å±å¤æ°ãäºæ¸¬å¤æ°ã«1åãã¤å帰ããå ´åã«å¾ãããï¼ç·å½¢ï¼äºæ¸¬å¤ã表示ã¦ãããæã ã¯ãå¾å±å¤æ°ã®ã«ãããã¤ã³ããå¤ãã¦ä¸é£ã®ãã¤ããªã»ãã¸ã¹ãã£ãã¯å帰ãå®è¡ãã¦ãã«ãããã¤ã³ãéã§ã®ä¿æ°ã®ç質æ§ããã§ãã¯ãããã¨ã§ãå¹³è¡ã¹ãã¼ãã®ä»®å®ãè©ä¾¡ã§ãããããã§ãå¹³è¡ã¹ãã¼ãã®ä»®å®ãç·©åãã¦ããã®å¦¥å½æ§ã確èªãã¾ãããããéæããããã«ãæã ã¯ãå ã®é åºå¾å±å¤æ°ããå ã®é åºå¾å±å¤æ°ï¼ããã§ã¯é©ç¨ï¼ãããå¤aããå°ããå ´åã¯0ã«ãé åºå¤æ°ãa以ä¸ã®å ´åã¯1ã«çãããæ°ããããã¤ããªã®å¾å±å¤æ°ã«å¤æããï¼ããã¯ãé åºå帰ã¢ãã«ã®ä¿æ°ãåæ§ã«è¡¨ããã®ã§ãããã¨ã«æ³¨æï¼ãããã¯ãé åºå¤æ°ã®k-1ã¬ãã«ã«å¯¾ãã¦è¡ããã以ä¸ã®as.numeric(apply) >= aã®ã³ã¼ãã£ã³ã°ã«ãã£ã¦å®è¡ããã1è¡ç®ã®ã³ã¼ãã§ã¯ããå¯è½æ§ãä½ããã鏿ããå ´åã¨ãããå¯è½æ§ãé«ãããé常ã«å¯è½æ§ãé«ããã鏿ããå ´åã®paredã®å¹æãæ¨å®ãã¦ãã¾ãã2è¡ç®ã®ã³ã¼ãã¯ã"å¯è½æ§ãä½ã "ã¾ã㯠"ããå¯è½æ§ãé«ã "ã鏿ããå ´å㨠"é常ã«å¯è½æ§ãé«ã "ã鏿ããå ´åã®paredã®å¹æãæ¨å®ãã¦ãã¾ãããã®ã¢ãã«ã®åçï¼-0.3783ï¼ãè¦ãã¨ãY>=1ã®åã§paredããnoãã«çããå ´åã®ã»ã«ã®äºæ¸¬å¤ã¨ä¸è´ãããã®ä¸ã®paredããyesãã«çããå ´åã®å¤ã¯ãåçã«paredã®ä¿æ°ãå ãããã®ï¼ããªãã¡ã-0.3783 + 1.1438 = 0.765ï¼ã«ãªãã
glm(I(as.numeric(apply) >= 2) ~ pared, family="binomial", data = dat)
Call: glm(formula = I(as.numeric(apply) >= 2) ~ pared, family = "binomial", data = dat) Coefficients: (Intercept) pared -0.3783 1.1438 Degrees of Freedom: 399 Total (i.e. Null); 398 Residual Null Deviance: 550.5 Residual Deviance: 534.1 AIC: 538.1
glm(I(as.numeric(apply) >= 3) ~ pared, family="binomial", data = dat)
Call: glm(formula = I(as.numeric(apply) >= 3) ~ pared, family = "binomial", data = dat) Coefficients: (Intercept) pared -2.441 1.094 Degrees of Freedom: 399 Total (i.e. Null); 398 Residual Null Deviance: 260.1 Residual Deviance: 252.2 AIC: 256.2
ãã®è¡¨ã®å¤ã使ã£ã¦ãæ¯ä¾ãªããºã®ä»®å®ããã®ã¢ãã«ã«ã¨ã£ã¦å¦¥å½ãã©ãããè©ä¾¡ãããã¨ãã§ããã(ä¾ãã°ãparedã "no "ã«çããå ´åã2以ä¸ã®é©ç¨ã¨3以ä¸ã®é©ç¨ã®äºæ¸¬å¤ã®éã®å·®ã¯ãããã2ã§ããï¼-0.378 - -2.440 = 2.062ï¼ãparedããã¯ããã®å ´åãã2以ä¸ã®é©ç¨ãã¨ã3以ä¸ã®é©ç¨ãã®äºæ¸¬å¤ã®å·®ããããã2ï¼0.765 - -1.347 = 2.112ï¼ã¨ãªãããã®ãã¨ãããå¹³è¡å¾é ã®ä»®å®ã妥å½ã§ãããã¨ããããï¼ä¸ã®ã°ã©ãã¯ããã®å·®ããããããããã®ã§ããï¼ãpublicãäºæ¸¬å¤æ°ã¨ããå ´åã®äºæ¸¬ã«ç®ãåããã¨ãpublicããnoãã«è¨å®ããå ´åãã2以ä¸ã®é©ç¨ãã¨ã3以ä¸ã®é©ç¨ãã®äºæ¸¬ã®å·®ã¯ç´2.14(-0.204 - - 2.345 = 2.141)ã¨ãªããå ¬éããã¯ããã«è¨å®ããå ´åãä¿æ°ã®å·®ã¯ç´1.37ï¼-0.175 - -1.547 = 1.372ï¼ã¨ãªãã2çµã®ä¿æ°ã®è·é¢ã®éãï¼2.14 vs. 1.37ï¼ã¯ãäºæ¸¬å¤æ°publicã«å¯¾ãã¦å¹³è¡å¾é ã®ä»®å®ãæãç«ããªããã¨ã示åãã¦ããã®ãããããªããããã¯ã"å¯è½æ§ã¯ä½ã "ãã "ããå¯è½æ§ãé«ã"ã¸ã®ç§»è¡ã¨ "ããå¯è½æ§ãé«ã "ãã "é常ã«å¯è½æ§ãé«ã "ã¸ã®ç§»è¡ã«ããã¦ãå ¬ç«å¦æ ¡ã¨ç§ç«å¦æ ¡ã¸ã®éå¦ã®å¹æãç°ãªããã¨ã示ãã¦ããã
以ä¸ã®plotã³ãã³ãã¯ãããããããã対象ãsã§ãããã¨ãRã«ä¼ãããwhich=1:3ã³ãã³ãã¯ãããããã«å«ã¾ããã¹ãyã®ã¬ãã«ã示ãå¤ã®ãªã¹ãã§ãããå¾å±å¤æ°ã3ã¤ä»¥ä¸ã®ã¬ãã«ãæã¤å ´åã¯ã3ãã«ãã´ãªã¼ã®æ°ã«å¤æ´ããå¿ è¦ãããï¼ä¾ãã°ã4ã¤ã®ã«ãã´ãªã¼å¤æ°ã®å ´åã¯ã0, 1, 2, 3ã¨çªå·ãä»ãã¦ãã¦ã4ã¨ããï¼ãã³ãã³ãpch=1:3ã¯ã使ç¨ãããã¼ã«ã¼ã鏿ããx軸ãã©ãã«ä»ãããxlab='logit'ããã°ã©ãã®ã¡ã¤ã³ã©ãã«ã空ç½ã«ããmain=' ' ã¨åæ§ã«ãªãã·ã§ã³ã§ããæ¯ä¾ãªããºã®ä»®å®ãæãç«ã¤ãªããåäºæ¸¬å¤æ°ã«ã¤ãã¦ãå¾å±å¤æ°ã®ã«ãã´ãªã®åã»ããã®ã·ã³ãã«éã®è·é¢ã¯ãåãããã«ãªãã¯ãã§ããããã®ãã¨ã示ãããã«ãå ±éã®åºæºç¹ãããããã«ãæåã®ã»ããã®ä¿æ°ããã¹ã¦ã¼ãã«æ£è¦åãããpared ã¨ãã夿°ã®ä¿æ°ãè¦ãã¨ã2ã¤ã®ä¿æ°ã»ããã®éã®è·é¢ãä¼¼ã¦ãããã¨ãããããããã¨ã¯å¯¾ç §çã«ãpublicã®æ¨å®å¤ã®éã®è·é¢ã¯ç°ãªã£ã¦ããï¼ã¤ã¾ãã1è¡ç®ããã2è¡ç®ã®æ¹ããã¼ã«ã¼ã大ããé¢ãã¦ããï¼ãæ¯ä¾ãªããºã®ä»®å®ãæãç«ããªãå¯è½æ§ã示åãã¦ããã
s[, 4] <- s[, 4] - s[, 3] s[, 3] <- s[, 3] - s[, 3] s # print
as.numeric(apply) N= 400 +-------+-----------+---+----+----+---------+ | | | N|Y>=1|Y>=2| Y>=3| +-------+-----------+---+----+----+---------+ | pared| No|337| Inf| 0|-2.062399| | | Yes| 63| Inf| 0|-2.112541| +-------+-----------+---+----+----+---------+ | public| No|343| Inf| 0|-2.140211| | | Yes| 57| Inf| 0|-1.371672| +-------+-----------+---+----+----+---------+ | gpa|[1.90,2.73)|102| Inf| 0|-2.375287| | |[2.73,3.00)| 99| Inf| 0|-2.038434| | |[3.00,3.28)|100| Inf| 0|-1.890070| | |[3.28,4.00]| 99| Inf| 0|-1.864219| +-------+-----------+---+----+----+---------+ |Overall| |400| Inf| 0|-1.996554| +-------+-----------+---+----+----+---------+
plot(s, which=1:3, pch=1:3, xlab='logit', main=' ', xlim=range(s[,3:4]))
ã¢ãã«ã®ä»®å®ãæãç«ã¤ãã©ããã®è©ä¾¡ãçµãã£ãããäºæ¸¬ããã確çãå¾ããã¨ãã§ãããããã¯é常ãä¿æ°ããªããºæ¯ãããçè§£ãããããä¾ãã°ãparedã¨publicã®åã¬ãã«ã§gpaãå¤åãããããããã®ã«ãã´ãªã¼ã®å¿åè ã«ãªã確çãè¨ç®ããããã®ããã«ã¯ãäºæ¸¬ã«ä½¿ç¨ãããã¹ã¦ã®å¤ã®æ°ãããã¼ã¿ã»ããã使ããã
newdat <- data.frame( pared = rep(0:1, 200), public = rep(0:1, each = 200), gpa = rep(seq(from = 1.9, to = 4, length.out = 100), 4)) newdat <- cbind(newdat, predict(m, newdat, type = "probs")) ##show first few rows head(newdat)
pared public gpa unlikely somewhat likely very likely 1 0 0 1.900000 0.7376186 0.2204577 0.04192370 2 1 0 1.921212 0.4932185 0.3945673 0.11221424 3 0 0 1.942424 0.7325300 0.2244841 0.04298593 4 1 0 1.963636 0.4866885 0.3984676 0.11484395 5 0 0 1.984848 0.7273792 0.2285470 0.04407383 6 1 0 2.006061 0.4801630 0.4023098 0.11752712
ããã§ãreshape2ããã±ã¼ã¸ã使ã£ã¦ãã¼ã¿ããªã·ã§ã¤ãããç°ãªãæ¡ä»¶ã§ã®äºæ¸¬ç¢ºçããã¹ã¦ãããããããäºæ¸¬ããã確çãç·ã§çµã³ãçµæã®ã¬ãã«ãapplyãã§è²åããããparedãã¨ãpublicãã®ã¬ãã«ã§ãã¡ã»ãããã¦ãããããããã¾ããã«ã¹ã¿ã ã©ãã«é¢æ°ã使ç¨ãã¦ãããããã®ååã¨è¡ãä½ã表ãã¦ãããã示ãæç¢ºãªã©ãã«ã追å ããã
lnewdat <- melt(newdat, id.vars = c("pared", "public", "gpa"), variable.name = "Level", value.name="Probability") ## view first few rows head(lnewdat)
pared public gpa Level Probability 1 0 0 1.900000 unlikely 0.7376186 2 1 0 1.921212 unlikely 0.4932185 3 0 0 1.942424 unlikely 0.7325300 4 1 0 1.963636 unlikely 0.4866885 5 0 0 1.984848 unlikely 0.7273792 6 1 0 2.006061 unlikely 0.4801630
ggplot(lnewdat, aes(x = gpa, y = Probability, colour = Level)) + geom_line() + facet_grid(pared ~ public, labeller="label_both")
èæ ®ãã¹ãç¹
- å®ç§ãªäºæ¸¬ï¼å®å ¨äºæ¸¬ã¨ã¯ãäºæ¸¬å¤æ°ã®1ã¤ã®å¤ãå¿ç夿°ã®1ã¤ã®å¤ã ãã¨é¢é£ãããã¨ãæå³ããããã®ãããªå ´åãStataã¯é常ãåºåã®å é ã«æ³¨ææ¸ããããã¢ãã«ãå®è¡ã§ããããã«ã±ã¼ã¹ãåé¤ããã
- ãµã³ãã«ãµã¤ãºï¼æå°¤æ¨å®æ³ãç¨ããé åºä»ããã¸ã¹ãã£ãã¯ã¨é åºä»ããããããã¯ãã©ã¡ããååãªãµã³ãã«ãµã¤ãºãå¿ è¦ã¨ãããã©ã®ç¨åº¦ã®å¤§ãããã¯è°è«ã®ããã¨ããã ããã»ã¨ãã©ã®å ´åãOLSå帰ãããå¤ãã®ã±ã¼ã¹ãå¿ è¦ã¨ããã
- 空ã®ã»ã«ã¾ãã¯å°ããªã»ã«ãã«ãã´ãªã«ã«äºæ¸¬å¤æ°ã¨çµæå¤æ°ã®éã®ã¯ãã¹ã¿ããè¡ã£ã¦ã空ã®ã»ã«ã¾ãã¯å°ããªã»ã«ããã§ãã¯ããã¹ãã§ãããã»ã«ã«ã±ã¼ã¹ãã»ã¨ãã©ãªãå ´åãã¢ãã«ãä¸å®å®ã«ãªãããã¾ã£ããå®è¡ãããªããããããªãã
- æ¬ä¼¼R-2ä¹ï¼OLSã§è¦ãããR-squaredã®æ£ç¢ºãªã¢ããã°ã¯ãªããçä¼¼R2ä¹ã«ã¯å¤ãã®ãã¼ã¸ã§ã³ããããæ§ã ãªæ¬ä¼¼Räºä¹ã®è©³ç´°ã¨èª¬æã«ã¤ãã¦ã¯Long and Freese 2005ãåç §ã
- 診æï¼éç·å½¢ã¢ãã«ã®è¨ºæãè¡ããã¨ã¯é£ãããé åºä»ããã¸ãã/ãããããã»ã¢ãã«ã¯ãã¤ããªã»ã¢ãã«ãããããã«é£ããããã¸ã¹ãã£ãã¯å帰ã®ã¢ãã«è¨ºæã®è°è«ã«ã¤ãã¦ã¯ãHosmer and Lemeshow (2000, Chapter 5)ãåç §ã®ãã¨ããªãããã¸ã¹ãã£ãã¯å帰ã®è¨ºæã¯ããããããå帰ã®è¨ºæã¨åæ§ã§ããã
References
- Agresti, A. (1996) An Introduction to Categorical Data Analysis. New York: John Wiley & Sons, Inc
- Agresti, A. (2002) Categorical Data Analysis, Second Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Harrell, F. E, (2001) Regression Modeling Strategies. New York: Springer-Verlag.
- Liao, T. F. (1994) Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models. Thousand Oaks, CA: Sage Publications, Inc.
- Powers, D. and Xie, Yu. Statistical Methods for Categorical Data Analysis. Bingley, UK: Emerald Group Publishing Limited.