2014-05-01ãã1ã¶æéã®è¨äºä¸è¦§
ãã¼ãã¼ãã®äººãã¡ãå ææ¨è«ã®æç§æ¸ãæ¸ãã¦ãã©ãããå ¬éãã¦ããã http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/ ã¨ããããç¾æ®µéã®å ¨å®¹ãææ¡ãããã®ã§ç®æ¬¡ãã¡ã¢ã I Causal inference without models 1 1 A deï¬nition of câ¦
dplyrã®ãã¼ã¸ã§ã³ã2.0ã«ä¸ãã£ã¦å°ã便å©ã«ãªãã¾ããã 詳ããã¯ä»¥ä¸ã®ãªãªã¼ã¹ãã¼ããã覧ãã ããã https://github.com/hadley/dplyr/releases/tag/v0.2.0 以ä¸ã®3ç¹ã大ããªå¤æ´ç¹ã %.%ã%>%ã«å¤ãã£ã do()ãçã¾ãå¤ãã£ã æ°ãã便å©é¢æ°ãå ãâ¦
geom_pathã¯ãã£ãã«ä½¿ããªãã®ã§ç¢å°ãæ¸ããã¨ã¯ç¥ããªãã£ãã library(ggplot2) smp <- data.frame(id=rep(1:5,each=2), group=rep(2008:2009,5), x=rnorm(10), y=rnorm(10)) library(grid) ggplot(smp, aes(x=x,y=y,group=id,label=group)) + geom_pathâ¦
ãã£ã¼ãã©ã¼ãã³ã°ãR㧠deeplearning(y~., data) ã¨ãããæãã§ä¸è¡ã§æ¸ããããªãã¨æã£ããã¨ããã¾ããããç§ã¯å¸¸ã æã£ã¦ãã¾ããã ã ãå®è£ ããã®ã¯ããã©ãã ã¨ããããã§æ¢ãããããã¾ããã ã¾ãRã§å®è£ ããã¦ããããã§ã¯ãªããh2oã¨ãããªã¼â¦
ã°ã°ã£ãããMLã«æ稿ããææ¥æ¬èªã ã¨å°ãã®ã§ã¡ãã»ã¼ã¸ãè±èªåãããã Sys.setlocale("LC_CTYPE","English")