ããã°ã©ã ã®ã¢ãããã¼ãã«ã¤ãã¦åé¡ããããããããªãã¾ã§ ChatGPT ã«è³ªåããå½¢ã§èª¿ã¹ã¦ããã¾ãã
ã²ã¼ã (1)
ãã®åé¡ã¯ä½ãã¨ããã¨ã¦ã¼ã¶ã¼ã®å ¥åãå¦çãããé¢æ°ããã°ã©ãã³ã°ãã®ã¢ãããã¼ãã«ã¤ãã¦èª¿ã¹ããã¨ãããã®ã§ããã¢ãããã¼ãã®åå¾ã®ããã°ã©ã ãçµã¿åããã¦ã¤ãã¬ã¼ã¿ã¼ã®ãããªå½¢ã§è¨è¿°ã§ããªããã¨ãã試ã¿ã§ãããä½ãè¨ãã°è¯ãã®ããããã¾ãããã©ã®ããã«èª¿ã¹ãã°è¯ãã®ãã¾ã ããããããªãã®ã§ããããããã£ã¦ã¿ã¾ãã
å ¥å1
以ä¸ã®ããã«å ¥åããã¨
以ä¸ã®ã ã²ã¼ã ããèãã¾ã( ã¯èªç¶æ°)ï¼
- ã¦ã¼ã¶ã¼ã¨ã³ã³ãã¥ã¼ã¿ã¼ã対æ¦
- ä¸ã¤ã®é§ãããä½ç½®(èªç¶æ°ã«å¯¾å¿)ã«ç½®ããã¦ãã
- ã³ã³ãã¥ã¼ã¿ã¼ã¯ãã®ä½ç½®ãè¨æ¶ãã¦ãã
- ã¦ã¼ã¶ã¼ã¯ãã®ä½ç½®ãã³ã³ãã¥ã¼ã¿ã¼ã«æãã¦ããããã¨ãã§ãã
- é§ã¯æåã¯ã¹ã¿ã¼ãã®ä½ç½®()ã«ç½®ããã¦ãã
- ã´ã¼ã«ã¯ ã®ä½ç½®
- ã¦ã¼ã¶ã¼ã¨ã³ã³ãã¥ã¼ã¿ã¼ã交äºã«é§ãåãã
- ä¸åã®æçªã§åãã¬ã¼ã¤ã¼ã¯é§ãä¸ã¤é²ãã( 大ããèªç¶æ°ã®ä½ç½®ã«é²ãã)ãã¨ãã§ãã
- ã¾ãã¯ããã¹ããã§ãã(ãã®å ´åã¯é§ã¯åããªã)
- èªåã®æçªã§ã´ã¼ã«()ã«å°éãããã¬ã¼ã¤ã¼ãåã¡
- ã©ã¡ãããåã¤ã¾ã§ç¶ãã
ãé¢æ°ããã°ã©ãã³ã°ãã®æ¹æ³ã§ã ã²ã¼ã ãã®ããã°ã©ã ãæ¸ãã¦ãã ãã
以ä¸ã®ãããªçµæã«ãªãã¾ããã
以ä¸ã¯Haskellã使ç¨ããã ã²ã¼ã ãã®é¢æ°åããã°ã©ãã³ã°ã«ããå®è£ ä¾ã§ãã
import System.IO (hFlush, stdout) type Position = Int nGame :: Position -> IO () nGame n = playGame 0 "User" where playGame :: Position -> String -> IO () playGame pos player | pos == n = putStrLn $ player ++ " wins!" | otherwise = do putStrLn $ "Current position: " ++ show pos putStr $ player ++ "'s turn (move/pass): " hFlush stdout action <- getLine let newPos = if action == "move" then pos + 1 else pos playGame newPos (nextPlayer player) nextPlayer :: String -> String nextPlayer "User" = "Computer" nextPlayer _ = "User"å®è¡æé
1. `nGame n` ãå¼ã³åºãã¾ã (ä¾: `nGame 10`)ã
2. ãã¬ã¼ã¤ã¼ãã¨ã«ãmoveãã¾ãã¯ãpassããå ¥åãã²ã¼ã ãé²è¡ããã¾ãã
å ¥å2
以ä¸ã®ããã«å ¥åããã¨
ãã®ããã°ã©ã ã«é¢ããã¦ã¼ã¶ã¼ã®å ¥åã®ããã°ãã¼ã¿ãããã¨ãã¾ãããã®ããã°ãã¼ã¿ã使ã£ã¦èªåçã«ããã°ã©ã ãã¢ãããã¼ãããã«ã¯ã©ãããã°è¯ãã§ãã(ãã®ã²ã¼ã ã¯ç°¡åãªä¾ãªã®ã§ãããã£ã¨è¤éãªã²ã¼ã ã ã¨æ¬¡ã®æãäºæ¸¬ãããã§ãããã§ã)
以ä¸ã®ãããªçµæã«ãªãã¾ããã
ãã®ããã°ãã¼ã¿ã使ã£ã¦ããã°ã©ã ãèªåçã«ã¢ãããã¼ããã次ã®æãäºæ¸¬ããããæ¦ç¥ãæ¹åããã«ã¯ãæ©æ¢°å¦ç¿ãæ´»ç¨ããæ¹æ³ãé©ãã¦ãã¾ãã以ä¸ã¯ãå ·ä½çãªæé ã¨ã¢ããã¼ãã®æ¦è¦ã§ãã
1. ãã¼ã¿åé
- ãã°ãã©ã¼ãããã®çµ±ä¸: ã¦ã¼ã¶ã¼ãè¡ã£ããmoveãããpassãã®é¸æè¢ãã²ã¼ã ã®é²è¡ç¶æ³(ç¾å¨ã®ä½ç½®)ãçµæ(åæ)ãªã©ãè¨é²ãããã¼ã¿ãæ´çãã¾ãã
- ä¾: `{ "position": 3, "player": "User", "action": "move", "result": "win" }`
- ç¹å¾´éã®è¨è¨: é§ã®ç¾å¨ä½ç½®ãæ®ãã®ã´ã¼ã«ã¾ã§ã®è·é¢ãéå»ã®æé ãªã©ããç¹å¾´éãã¨ãã¦æ½åºãã¾ãã
2. ã¢ãã«ã®æ§ç¯
- æ©æ¢°å¦ç¿ã¢ãã«:
- 次ã®æãäºæ¸¬ããã¢ãã«ãæ§ç¯ãã¾ãã
- ä¾: 決å®æ¨ãã©ã³ãã ãã©ã¬ã¹ããã¾ãã¯ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã
- å ¥å: ã²ã¼ã ç¶æ (ç¾å¨ä½ç½®ãæçªã®ãã¬ã¤ã¤ã¼ãªã©)ã
- åºå: æé©ãªæ¬¡ã®æ(ä¾: move, pass)ã
- åçãé«ããæ¦ç¥:
- ç¶æ 価å¤ãè©ä¾¡ããããã®Q-learningãã深層強åå¦ç¿(Deep Reinforcement Learning)ã使ç¨ãã¦æé©ãªæ¦ç¥ãå¦ç¿ãã¾ãã
3. ã¢ãã«å¦ç¿
- ãã¼ã¿ã®åå¦ç:
- ä¸è¶³ãã¦ããå¤ã®è£å®ãç°å¸¸å¤ã®é¤å»ã
- ã²ã¼ã ãã°ãç¹å¾´éã¨ã©ãã«ã«åããã
- ã¢ãã«ã®ãã¬ã¼ãã³ã°:
- ãã¼ã¿ãè¨ç·´ãã¼ã¿ã¨ãã¹ããã¼ã¿ã«åããã¢ãã«ãå¦ç¿ããã¾ãã
- è©ä¾¡:
- ãã¹ããã¼ã¿ã使ã£ã¦ãã¢ãã«ã®äºæ¸¬ç²¾åº¦ãæ¤è¨¼ãã¾ãã
4. ããã°ã©ã ã®ã¢ãããã¼ã
- ã¢ãã«çµ±å: å¦ç¿ããã¢ãã«ãã²ã¼ã ãã¸ãã¯ã«çµ±åãã¾ãã
- ä¾ãã°ãã³ã³ãã¥ã¼ã¿ã¼ã®æçªã§æ¬¡ã®æãã¢ãã«ã«äºæ¸¬ããã¾ãã
import MLModel (predictNextMove) -- ä»®æ³ã®æ©æ¢°å¦ç¿ã¢ã¸ã¥ã¼ã« computerMove :: Position -> IO Position computerMove pos = do let action = predictNextMove pos -- æ©æ¢°å¦ç¿ã¢ãã«ãä½¿ç¨ return $ if action == "move" then pos + 1 else pos5. ç¶ç¶çãªæ¹å
- ãã£ã¼ãããã¯ã«ã¼ã:
- ã²ã¼ã ã®æ°ãããã°ãã¼ã¿ãåéããã¢ãã«ã®ç²¾åº¦ãå®æçã«æ´æ°ãã¾ãã
- ã¢ãã«ã®åå¦ç¿:
- ãã¼ã¿ãå¢å ãããã¨ã«ã¢ãã«ãåå¦ç¿ãããã精度ãé«ãã¾ãã
- A/Bãã¹ã:
- å¤ããã¼ã¸ã§ã³ã¨æ°ãããã¼ã¸ã§ã³ãæ¯è¼ããå®éã®ã¦ã¼ã¶ã¼ã®åå¿ã§æ¹åå¹æãæ¤è¨¼ãã¾ãã
å ·ä½ä¾: Pythonã§ã®å¼·åå¦ç¿ã®ç°¡æå®è£
以ä¸ã¯ãPythonã§ã ã²ã¼ã ããå¼·åå¦ç¿ã§ã¢ãã«åããã·ã³ãã«ãªä¾ã§ãã
import random class NGameAgent: def __init__(self, n): self.n = n self.q_table = {} # ç¶æ -è¡å価å¤ãã¼ãã« def get_action(self, state): if state not in self.q_table: self.q_table[state] = {"move": 0, "pass": 0} # ε-greedyæ¦ç¥ if random.random() < 0.1: return random.choice(["move", "pass"]) return max(self.q_table[state], key=self.q_table[state].get) def update_q(self, state, action, reward, next_state): if state not in self.q_table: self.q_table[state] = {"move": 0, "pass": 0} if next_state not in self.q_table: self.q_table[next_state] = {"move": 0, "pass": 0} alpha = 0.1 gamma = 0.9 self.q_table[state][action] += alpha * ( reward + gamma * max(self.q_table[next_state].values()) - self.q_table[state][action] ) # å®éã®å¦ç¿ã¨ã·ãã¥ã¬ã¼ã·ã§ã³ã¯ããã使ç¨ãã¦è¡ããã®ããã«ãã¦ãããã°ãã¼ã¿ãæ´»ç¨ããããã°ã©ã ãåçã«é²åããããã¨ãã§ãã¾ãã