2009-02-01ãã1ã¶æéã®è¨äºä¸è¦§
æ¨æ¥ã®æ¥è¨ã®ç¶ãã§ãåé¢æ°ã®åã追è¨ãããã¨æã£ã¦ããã§ãã⦠*Main> :t g g :: (Num b) => (b, b, b) -> b *Main> :t g1_1 g1_1 :: (Num b) => (b, b) -> b -> b *Main> :t g1_2 g1_2 :: (Integer, Integer) -> Integer -> Integer *Main> :t g2 g2 :: â¦
åç §ï¼ http://d.hatena.ne.jp/rst76/20090221/1235178786 http://d.hatena.ne.jp/m-hiyama/20090226/1235606901 è¨æ£ãå ¥ãã¦ã¿ãã g (a, b, x) = a * x + b g1_1 (a, b) = \x -> g (a, b, x) g1_2 = curry3 g g2 = curry $ curry3 g ãã ãâ curry3 :: ((â¦
åèï¼http://d.hatena.ne.jp/m-hiyama/20090204/1233722560 ãã¤ãã»ããã¼ç¬¬äºæ®µã§ããããæ親ä¼ã¯çµäºãã¦ãé ã§ãããç§ã¯åºãã«ãæãã¡ããã¾ããããæ± è¢ã®ä¼å ´ã¯æºå¸ã§ããã空調ã®ã¯ã¼ã©ã¼ããããã»ã©ã«éä¸æãã£ãã§ãã ååã¯ã©ã ãè¨ç®ã®ãâ¦
2009-2-8(æ¥)(13:00-18:00) æ±äº¬é½ (ã³ããã£ã¨ ãã¬ã¼ãã³ã°ã«ã¼ã )ããã¹ãï¼ P. Selinger, "A survey of graphical languages for monoidal categories" (http://www.mscs.dal.ca/~selinger/papers/graphical.pdf) 交éã¢ã¯ã»ã¹: http://begi.net/modulesâ¦