ã¿ãªãããããã¾ãã¦ããã§ã¨ããããã¾ãã ãæ°å¹´éå§ã¨ã¨ãã«ããã³ãã³ã«åç»ãæ稿ãã¾ããã ããã³ãã³åç»ãæé©åæ°å¦ã§æ°å¹´ã®æ¨æ¶ ããããã好è©ã ã£ãããã§å¬ããéãã§ããã³ã¡ã³ãããã ãã£ãæ¹ããããã¨ããããã¾ãã ããã£ã¨è©³ãã説æããã¨ã®ã³ã¡ã³ããããã¤ãå¯ãããã¦ããã®ã§ã解説ãã¾ãã2ã¨9ã®æåã¯ã両æ¹ã¨ã4ã¤ã®ç¹ã¨ãã®å¨ããå ¬è»¢ãã4ç¹ãæ´ã«ãããåã4ç¹ãå ã«ä½ããã¾ãã以ä¸ããããããææãææãè¡æã¨å¼ã¶ãã¨ã«ãã¾ãã4è¡æã2çµã«ãã2æ¬ã®ç´ç·ãä½ãããã®äº¤ç¹ã«æåãæããã¾ãã ãããããã®ç¹ã®åº§æ¨ã¯ãæå»ãtã¨ãã¦æ¬¡ã®ããã«è¡¨ãã¾ããã p1=(a1*cos(2(2t-e1)),a1*sin(2(2t-e1)))+p5 p2=(a2*cos(2(2t-e2)),a2*sin(2(2t-e2)))+p6 p3=(a3*cos(2(2t-e3)),a3*sin(
{{#tags}}- {{label}}
{{/tags}}