http://www.cloudera.co.jp 2013/10/08 ã«éå¬ãããHue åå¼·ä¼ã®è³æã§ããRead less
ã·ãªã³ã³ãã¬ã¼ã®æè³å®¶ãããä¸ç®ç½®ãããTreasure Dataã®æé·ãæ¯ãã¦ãããã®æè¡åã¨çµå¶ç念ã«ã¤ãã¦ãTreasure Dataã®CTOã§ãã太ç°ä¸æ¨¹æ°ãåºèª¿è¬æ¼ã§èªã£ããã®å 容ãã¬ãã¼ããã¾ãã Feature Creepã§ã¯ãªãâãã¿âãä½ã 太ç°æ°ãã¯ããã¨ããTreasure Dataã®åµæ¥ã¡ã³ãã¼ã¯ããããHadoopãmemcachedãMongoDBãªã©ãç¾å¨ã®ããã°ãã¼ã¿ãã¼ã ãæ¯ãããªã¼ãã³ã½ã¼ã¹æè¡ã®éçºã«å¦çæ代ããé¢ãã£ã¦ãã¾ããããããã®ãªã¼ãã³ã½ã¼ã¹ãããã¯ããã¨ãã«Hadoopã«è§¦ããçµé¨ãé·ãã£ããã¨ããTreasure Dataè¨ç«ã®å¤§ããªãã£ããã«ãªã£ã¦ãã¾ãã ãHadoopã®ç»å ´ã¯ããã¾ã§ä½¿ãã¥ããã ãã®åå¨ã ã£ãåæ£ã·ã¹ãã ã®ä¸çã大ããå¤ãããä¸æ¹ã§ãã¦ã¼ã¶ä¼æ¥ãHadoopããããã¤ããéç¨ãã¯ããã¦ããçµå±ã¯ã¡ã³ããã³ã¹ã大å¤ã«ãª
æè¿ã¯ãªãã¹ãæè¡çãªè©±ããæ¸ããªãããã«ãã¦ããã®ã§ããããã¾ã«ã¯å人çãªæèãæ¸ãã¦ã¿ããã¨ã«ãã¾ãã ã¯ãªã¹ãã¹ã ããããã°åãã¦ãã8å¨å¹´ã§ãããããã§ããã Hadoop ã¯ã大éã®ãã¼ã¿ããªã¼ãºããã«ã«è¨ç®å¦çã§ããããã«ãããã¨ãã課é¡ããçã¾ãã¾ããã ã¤ã¾ããã¼ã¨ãªã課é¡ã¨ãã¦ã ãã¼ã¿ã大éã§ãã ãªã¼ãºããã«ã§ãã è¨ç®å¦çãã§ãã ã¨ãããã®ãããã¾ãã å¾ã2ã¤ã¯è©±ãæ©ããä½ã³ã¹ãã§è¨ç®å¦çãè¡ãããã¨ããã®ã¯ã»ã¨ãã©ã®ITé¢ä¿è ãæ±ããã¼ãºã§ãããã ããããããã¼ã¿ã大éã§ãããã¨ãã課é¡ãåä»ã§ãã ã¾ã第ä¸ã«ãããããªå¤§éã®ãã¼ã¿ãã©ãã«ããã®ãï¼ãã¨ããåé¡ãããã¾ãã ãã¨ãã°1æ¥1TBã®ãã¼ã¿ãçæããã¨ãã¦ãå¹´é365TBã§ããããããã« 0.3PBãããã°ãã¼ã¿ã®ä»£åè©ã¨ãã¦è¨ãããããã¿ãã¤ããªã¼ãã¼ãã«ã¯ç¨é ãã§ãã 1æ¥1TBã£ã¦ãè¦ããã«
ãã¼ã¿ãä¿¡é ¼ããAI ãä¿¡é ¼ãã ä¿¡é ¼ã§ãããã¼ã¿ãä¿¡é ¼ã§ããã¢ãã«ãä¿¡é ¼ã§ãã AI ãå®ç¾ããããã«ãããã»ã©å¤ãã®ã¯ã©ã¦ãã®ãã¾ãã¾ãªãã¼ã¿ã¿ã¤ãã管çã§ãããªã¼ãã³ãã¼ã¿ã®ã¤ããã¼ã·ã§ã³ã¨å¤§è¦æ¨¡å±éã«å¯¾å¿ã§ãããã©ãããã©ã¼ã ã¯ä»ã«ããã¾ããã
Hadoopã®SQL対å¿åæ£ã¯ã¨ãªã¨ã³ã¸ã³ãCloudera ImpalaããClouderaããªã¼ãã³ã½ã¼ã¹ã§å ¬é Hadoopã®ãã£ã¹ããªãã¥ã¼ã·ã§ã³ãã³ãã¨ãã¦ç¥ãããClouderaã¯10æ25æ¥ãSQLã«å¯¾å¿ãããã¼ã¿ã®åæé度ã¯MapReduceãããä½åãé«éã ã¨ããæ°ããåæ£ã¯ã¨ãªã¨ã³ã¸ã³ãCloudera Impalaãï¼è£½ååãCloudera Enterprise RTQãï¼ããªã¼ãã³ã½ã¼ã¹ã§å ¬éãã¾ããã ããã¾ã§Hadoopã§ã¯å é¨ã§MapReduceã¨å¼ã°ããå¦çãç¨ãããã¦ãã¾ããããImpalaã§ã¯MapReduceã使ãããClouderaã2å¹´ããã¦éçºããç¬èªã®åæ£ã¯ã¨ãªã¨ã³ã¸ã³ãç¨ãã¦å¦çãè¡ãã¾ããHiveã®ä¸ä½äºæã®SQLãå©ç¨ã§ããHive/MapReduceã§æ°åããã£ã¦ããå¿çæéãæ°ç§ã«ç縮ããã¨èª¬æããã¦ãã¾ãã ã°ã¼ã°ã«ã®Dremel
åºå¹¹ç³»ã·ã¹ãã ERP ä¼è¨ã·ã¹ãã é»å帳票ã·ã¹ãã ã¯ã¼ã¯ããã¼ å¤æ 管çã·ã¹ãã ãã£ã¨è¦ã æ å ±å ±æã·ã¹ãã ã»ã³ãã¥ãã±ã¼ã·ã§ã³ãã¼ã« ã°ã«ã¼ãã¦ã§ã¢ Webä¼è° ãã¬ãä¼è°/ãããªä¼è° ãã¡ã¤ã«å ±æ ææ¸ç®¡ç ãã£ã¨è¦ã æ å ±ã·ã¹ãã SFA CRM ã³ã¼ã«ã»ã³ã¿ã¼/CTI BPM PLM ãã£ã¨è¦ã ã¡ã¼ã« é»åã¡ã¼ã« ã¡ã¼ã«ã»ãã¥ãªã㣠ã¡ã¼ã«ã¢ã¼ã«ã¤ã ãã®ä»ã¡ã¼ã«é¢é£ ãã£ã¨è¦ã ã¨ã³ããã¤ã³ãã»ãã¥ãªã㣠ã¢ã³ãã¦ã¤ã«ã¹ æå·å èªè¨¼ ID管ç ã¡ã¼ã«ã»ãã¥ãªã㣠ãã£ã¨è¦ã ãããã¯ã¼ã¯ã»ãã¥ãªã㣠ãã¡ã¤ã¢ã¦ã©ã¼ã« WAF IPS UTM ã»ãã¥ãªãã£è¨ºæ ãã£ã¨è¦ã éç¨ç®¡ç çµ±åéç¨ç®¡ç ITè³ç£ç®¡ç ãµã¼ãã¼ç®¡ç ãããã¯ã¼ã¯ç®¡ç çµ±åãã°ç®¡ç ãã£ã¨è¦ã ããã¯ã¢ãã ããã¯ã¢ãããã¼ã« ããã¯ã¢ãããµã¼ãã¹ ãã¼ãããã¯ã¢ãã ãã®ä»ããã¯ã¢ããé¢é£ ãã£
Hadoop Summit 2012 - Hadoop and Vertica: The Data Analytics Platform at Twitter The document discusses Twitter's data analytics platform, including Hadoop and Vertica. It outlines Twitter's data flow, which ingests 400 million tweets daily into HDFS, then uses various tools like Crane, Oink, and Rasvelg to run jobs on the main Hadoop cluster before loading analytics into Vertica and MySQL for web
Hadoopã¦ã¼ã¶ã¼ãç´æ¥æ¯æ´ããããã ãæ´»ç¨æ¹æ³ã®æ å ±æä¾ã¯âéæ¡å âã¾ã§ã Cloudera 代表åç· å½¹ç¤¾é· ã¸ã¥ã»ãã å°ææ° ããã°ãã¼ã¿ãã¼ã ã«ç«ãä»ãããªã¼ãã³ã½ã¼ã¹ã®åæ£ãããå¦çã½ãããApache Hadoopããã®Hadoopã®ãã£ã¹ããªãã¥ã¼ã·ã§ã³ï¼é¢é£ã³ã³ãã¼ãã³ãã管çãã¼ã«ãå°å ¥ã¦ã¼ãã£ãªãã£ã¼ãªã©ãå梱ãããã®ï¼ã§ãããCloudera's Distribution Including Apache Hadoopï¼CDHï¼ããæä¾ããç±³ã¯ã©ã¦ãã©ã2012å¹´4æ26æ¥ãæ¥æ¬æ³äººãClouderaæ ªå¼ä¼ç¤¾ããè¨ç«ããï¼é¢é£è¨äºï¼ãæ¥æ¬æ³äººã®å代社é·ã¨ãªã£ãã¸ã¥ã»ãã å°ææ°ã«ãæ±è² ãä»å¾ã®æ¦ç¥ãèããã ç§ã¯ä»åã®å°±ä»»ã¾ã§ã«14社ã®ç¤¾é·ãåãã30ä½å¹´ã«ããã£ã¦ã»ã¼2é±éããã«æ¥æ¬ã¨ç±³å½ãå¾å¾©ããçæ´»ãç¶ãã¦ããããæ¥æ¬æ³äººç«ã¡ä¸ãã®ããããèªèªãã¦ãããããã¾
http://ascii.jp/elem/000/000/687/687170/ ããããå¡©æ¢ ã«ãªã£ããããã§ãä¸å¿ãæåã«ä¸ãã£ã¦ããã¤ã³ã¿ãã¥ã¼è¨äºãè¨æ£ãã¦ããã®ç¶æ ã¨ããæãã§ããæåã®ã»ãã¯ãã£ã¨æ´¾æã ã£ããã¾ã¼ããããã«èªã¿æã§ä¸å¿«ã«æãã人ãããã ããããã¨ã¯ããã話ãããã¨ãã¤ãªãã§ããé¨åã¯ç¢ºãã«ããããã§ãã¯ã¦ã©ããããã®ããªã»ã»ã»ã¨æã£ã¦ãããã¡ã«ãªãªã¼ã¹ã«ãªã£ãã¨ããã®ãå®æ ã§ããã ãã£ã¨ãã¾ãèªãã§ä¸å¿«ã«æã£ãæ¹ã¯ç¢ºå®ã«ããã£ãããã¨æãã®ã§ããã®æ¹ãã¡ã«ã¯ãè©«ã³ç³ãä¸ãã¾ããããã¾ããã§ããã ãã®ä¸ã§çæãæ¸ãã¦ããã¨ã»ã»ã» ã¾ããHadoopã¯çµ±è¨ã®åºç¤ãç¡è¦ãã¦ããã®ãï¼ã¨ããåé¡ã§ãããåºæ¬çã«Hadoopã®BIã§é£¯ãé£ã£ã¦ãã人ã¯ãããããããã¼ã¿ã»ãµã¤ã¨ã³ãã£ã¹ããã¨ããè·ç¨®ã®äººãã¡ã«ãããæ¹ãã¡ã§ãå½ç¶ãçµ±è¨ã®ããã ãå½ããåã®è©±ã ãã大æµã®Ha
ãã¼ã >ãç¥ãã>ãã¼ãã©ã¹ã»ãã¯ããã¸ã¼ãºãæ ªå¼ä¼ç¤¾ã¢ã³ãã«ã»ã³ãµã¼ãã¹ã®å価è¨ç®ã®åºå¹¹ãããå¦çãAsakusa Frameworkâ¢/Hadoopã«ã¦1/12ã®æéã«ç縮 ã¢ãã¾ã³ ã¦ã§ã ãµâãã¹Â®ã®Amazon® VPCãå©ç¨ããã¤ã³ãã©æ§ç¯ã»éç¨ã³ã¹ããå¤§å¹ åæ¸ ãã¼ãã©ã¹ã»ãã¯ããã¸ã¼ãºãæ ªå¼ä¼ç¤¾ã¢ã³ãã«ã»ã³ãµã¼ãã¹ã®å価è¨ç®ã®åºå¹¹ãããå¦çãAsakusa Frameworkâ¢/Hadoopã«ã¦1/12ã®æéã«ç縮 ã¢ãã¾ã³ ã¦ã§ã ãµâãã¹Â®ã®Amazon® VPCãå©ç¨ããã¤ã³ãã©æ§ç¯ã»éç¨ã³ã¹ããå¤§å¹ åæ¸ 2012å¹´05æ07æ¥ PDFçã®ãã¦ã³ãã¼ãã¯ãã¡ã æ ªå¼ä¼ç¤¾ãã¼ãã©ã¹ã»ãã¯ããã¸ã¼ãº(以ä¸ããã¼ãã©ã¹)ã¯ãå½ç¤¾ãéçºããAsakusa Framework⢠(*1) (以ä¸ããAsakusaã)ãå©ç¨ãã¦æ ªå¼ä¼ç¤¾ã¢ã³ãã«ã»ã³ãµã¼ãã¹ï¼ä»¥ä¸ãã¢ã³ãã«ã»ã³ãµã¼
Read it now on the OâReilly learning platform with a 10-day free trial. OâReilly members get unlimited access to books, live events, courses curated by job role, and more from OâReilly and nearly 200 top publishers. If youâve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de fact
ï¼ï¼åå ãã®é£è¼ã§ã¯ãããã°ãã¼ã¿ã®åéããæ ¼ç´ã¾ã§ã®ã·ã¹ãã ãã¶ã¤ã³ã«ã¤ãã¦æ¦è¦³ãã¦ãããæçµåã¯ç· ããããã¨ãã¦ãåææè¡ã®èª²é¡ã¨ä»å¾ã®æ¹åæ§ãèãã¦ã¿ãã ããã°ãã¼ã¿ã«ãããåææè¡ã®èª²é¡ åææè¡ã®èª²é¡ãèããããã«ãåååãä¸ããECãµã¤ãã®æ¶è²»è è¡åãã°ãã¼ã¿ã®åæãæ³å®ãã¦ã¿ããå³1ã¯ãå²å¼çã¨å£²ä¸é¡ã®ç¸é¢ã ãã§ãªããè³¼å ¥æã«è¡¨ç¤ºããã¦ããå£ã³ãæ å ±ãã©ã®ç¨åº¦ã®å½±é¿ãä¸ããããåæããä¾ã示ãããã®ã ããã®ä¾ã§ã¯ãå£ã³ãè©ä¾¡ãé«ãã¨ãå²å¼çã«é¢ä¿ãªã売ä¸é¡ãé«ããã¨ã示ãã¦ããï¼å³ã°ã©ãã®åã®å¤§ããã¯å£²ä¸é¡ã®å¤§ããã示ãï¼ã ãã®ãããªåæãè¡ãå ´åãï¼åã®ãã¼ã¿ãã¼ã¹æ¤ç´¢ã ãã§ã¯çµæãåºããªãããã次ã®ãããªè¤æ°ã®å¦çã¹ããããå¿ è¦ã¨ãªãã ï¼1ï¼ï¼ç»é¢ã«å«ã¾ããè¤æ°ã®å£ã³ãè©ä¾¡ãããä¾¡æ ¼ã«é¢ããè©ä¾¡ãé¤å¤ããç·åè©ä¾¡ææ°ãç®åºããã ï¼2ï¼ä¼å¡åãå²å¼ãå ç®ãããªã©å²
Ilya Katsovæ°ã«ãããMapReduce Patterns, Algorithms, and Use Casesãã®ç¿»è¨³ http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ (ä¸æ¸ãã«å ¥ãã¦æ¨æ²ããã¤ãããããªããå ¬éããã¦ãã¾ã£ã¦ããã®ã§ããã¨ã§ããããä¿®æ£ããã¨æãã¾ã) February 1, 2012 ãã®è¨äºã§ã¯ãWebãç§å¦è«æã§è¦ãããç°ãªããã¯ããã¯ã®ä½ç³»çãªè¦ç¹ãä¸ããããã«ãæ°ã ã®MapReduceãã¿ã¼ã³ã¨ã¢ã«ã´ãªãºã ãã¾ã¨ããã ããã¤ãã®å®ç¨çãªã±ã¼ã¹ã¹ã¿ãã£ãæä¾ãã¦ããã ãã¹ã¦ã®èª¬æã¨ã³ã¼ãã¹ããããã§ã¯ãMapperãReducerãCombinerãPartitionaerãã½ã¼ãã£ã³ã°ã«ããã¦Hadoopã®æ¨æºçãªMapReduceã¢ãã«ãå©ç¨ãã¾ãããã®ãã¬ã¼
20åã§è§£èª¬ã¾ããããï¼ãªã¯ã«ã¼ã å¿ããå¦çã®ã¿ãªããã«ã ãµã¯ã£ã¨ããã¾æéã«è¦ã¦ã»ãã ãªã¯ã«ã¼ãã®ä¼ç¤¾èª¬æåç»ã§ãã ãã£ãã¿ã¼ãªã¹ã 00:12ããªã¼ããã³ã° 02:17ããªã¯ã«ã¼ãã«ã¤ã㦠04:33ããªã¯ã«ã¼ãã®äºæ¥ã«ã¤ã㦠08:12ãé å±è·ç¨®ã«ã¤ã㦠10:37ãå ¥ç¤¾å¾ãã£ãªã¢ãã¹ã«ã¤ã㦠11:56ãæé·ãä¿ãå¶åº¦ã¨é¢¨å 15:58ãæ°è¦äºæ¥ã¸ã®ææ¦ 18:20ãä»äºã¨ãã©ã¤ãã¼ãã®ä¸¡ç«
ãæ¥è¨/2012å¹´02æ09æ¥/大æéä¿¡ä¼ç¤¾ã®ç 究æãè¾ãã¦ãã½ã¼ã·ã£ã«ã²ã¼ã å±ããã«è¡ãã¾ãããã¯ç®¡çè ããã®é²è¦§ã®ã¿è¨±å¯ãã¦ãã¾ãã ãã°ã¤ã³ ãã°ã¤ã³
ãªã¼ãã³ç³»ã®æ´å²ã¯ãåºæ¬çã«æ±ç¨æ©ã¨ã®æ¦ãã§ãããå人çã«ãèªåã®æ¦ãããããã¨ã¾ããã«æ±ç¨æ©ã¨ã®æ¦ãã§ãããLinux? ããã¡ãã§ãããJava? 飲ããã®ï¼Objectæå? å質é«ãã®?ãã»ã»ã»ã¾ããããªæãã§ãããã確ãã«Linuxã¯ãã¯ãæ¨æºã«ãªãã¾ãããJavaã§ã®éçºã¯æ®éã«ãªãã¾ãããObjectæå以å¤ã®éçºã¯ã¾ãæ®éã«ãªãã§ãããã»ã»ã»ããããæ®å¿µãªããåºå¹¹ãããã¯æªã ã«æ±ç¨æ©ã§ããæ±ç¨æ©ã¯æªã ã«ç¾å½¹ã§ãããåºå¹¹å¦çã®æ ¹ã£ãã¯ããã¾ã æ±ç¨æ©ã§åãã¦ãã¾ããä¿¡é ¼æ§ã¯çªåºãã¦ããããããã©ã¼ãã³ã¹ããããå¦çã«é¢ãã¦ã¯ä¾ç¶ã¨ãã¦æå¼·ã ã¨è¨ããã§ããããæ°äººCOBOLãªäººã®ããããããã¤ãã¼ãªOracle使ãã®SQLãããã軽ãåé§ããäºã¯ãã¾ã æ®éã«ããã¾ããã»ã»ã»ãªããï¼ å¤é度ãéãããã¾ããã æ±ç¨æ©ã¯ãã¼ãã¦ã§ã¢ããOSã¬ãã«ã¾ã§ãã¹ã¦ãå¤é度ãä¸ããäºãåæã«å¦
äºä¾ä»¥å¤ã«ãHadoop World NYC 2011ãã§æ³¨ç®ãéãããã¼ã¯ã¼ãã¯ãã次ä¸ä»£Hadoopããã¨ã³ã·ã¹ãã ããHBaseããæ¢åDWHã¨ã®é£æºããªã©ã§ããã ã¹ã±ã¼ã©ããªãã£ã¼ã®å¼·åç¶ã 次ä¸ä»£Hadoopã¯ã¢ã¼ããã¯ãã£ã¼ãæ¹è¯ããããé«ãã¹ã±ã¼ã©ããªãã£ã¼ãä¿¡é ¼æ§ãæ©è½ãå®ç¾ããè¦è¾¼ã¿ã§ãããä¾ãã°ãåå空éã¨ãããã¯ã¹ãã¬ã¼ã¸ã®ç®¡çãåé¢ãã¦ã¹ã±ã¼ã©ããªãã£ã¼ãé«ãããHDFSãã§ãã¬ã¼ã·ã§ã³ãããã¹ã¿ã¼ãµã¼ãã¼ã®å¯ç¨æ§ãåä¸ããããNameNode HAããMPIï¼ã¡ãã»ã¼ã¸ã»ããã·ã³ã°ã»ã¤ã³ã¿ãã§ã¼ã¹ï¼ãªã©ã®åæ£å¦çã¤ã³ã¿ãã§ã¼ã¹ãå©ç¨ã§ãã¦1ä¸å°ã¾ã§ã¹ã±ã¼ã«ã¢ã¦ããå¯è½ãªãMapReduce 2.0ããªã©ãåããããããã®æ©è½ã¯ããã¼ã¸ã§ã³0.23ã«æè¼ããããããã¨ã³ã¿ã¼ãã©ã¤ãºé åã§æ¡ç¨ã§ããã¬ãã«ã«å°éããã ããã ãHadoopéçºã¯åè£ããªãã Hado
ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã¨ã¢ï¼OSSï¼ã®åæ£ãããå¦çã½ãããHadoopããå©ç¨ããä¼æ¥ãç¸æ¬¡ãã§ããã2011å¹´11æã«ç±³å½ã§éå¬ãããã«ã³ãã¡ã¬ã³ã¹ãHadoop World NYCãã§ã¯ãç±³JPã¢ã«ã¬ã³ã»ãã§ã¼ã¹ãªã©ã®ææ°äºä¾ãç»å ´ãããåç·¨ã§ã¯æ¬ä¼è°ã§æããã«ãããæ´»ç¨ååãç´¹ä»ããå¾ç·¨ã§ã¯ä¸»ã«ãã³ãã¼å´ã®ååãå ±åããã 2011å¹´11æ8æ¥ãã2æ¥éã«ãããããHadoop World NYC 2011ããç±³å½ãã¥ã¼ã¨ã¼ã¯ã§éå¬ãããã3åãã®éå¬ã¨ãªãä»åã¯ã27ã«å½ãã1400人ãè¶ ããITããã¸ã£ã¼ãéçºè ãªã©ãéã¾ã£ãï¼åç1ï¼ã Hadoop Worldã¯æ±æµ·å²¸ã§éå¬ãããã ããã£ã¦ãã¸ãã¹è²ãå¼·ããææ°äºä¾ãææºã®çºè¡¨ãå¤ãï¼è¡¨1ï¼ã主å¬ã¯ãHadoopå°æ¥ã§ãããHadoopã®çã¿ã®è¦ªãã°ã»ã«ããã£ã³ã°æ°ãæå±ããç±³ã¯ã©ã¦ãã©ãä»åã®ã¹ãã³ãµã¼ã«ã¯ãHadoopé¢
Hadoopã¢ããã³ãã»ã«ã¬ã³ãã¼ã®å¤åæçµæ¥ã®ã¯ãã ãã£ãããªãã§ãæ¥å¹´ã®äºæ³ã§ããã¦ã¿ãããã¨ã æ¥æ¬ã®è©±ã§ããä¸çã®ãã¨ã¯ãããããã¾ãããæ¬å½ã®ãã¨ã¯ãæ¥æ¬ã«ã¯ä¼ãããªãï¼è¡¨åãã®è©±ã¯ã¨ããããç¾ç¶ã§ã¯VCãããã®å¤éã®æ¹ãçºè¨åãããã¨æãããåããã§ãããã®è¾ºã®æ£ç¢ºãªæ å ±ã¯ä¼æãã¦ãæ°ããã¾ããï¼ã¨æãã®ã§ãã¨ã¯ãããæ¥æ¬ã®Hadoopãã¼ã±ããã¯ããããªãããã£ã¦ããï¼ã¨ããããããã£ã¦ããªãã¨ã¾ããï¼æãã¿ãããªã®ã§ã»ã»ã»åæã«ãæ¥å¹´ã®Hadoopã¨ãäºæ³ãã¾ããå¤ãããç¼ãèãããã¾ãã 1 大éãã¼ã¿å¦çã§ã®ããã¡ã¯ãå ã»ããããWebç³»ã§ã¯ã¤ãã£ã¦ããªãã¨ããã¯ä¸ç¤¾ããªããªã ç¹ã«ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã¨ã³ã¸ã³ãããã¯ãããæ®éã«å®è£ ãã¦ä½¿ãããã ãããã以ä¸ã®ãã®ã¯åºãªããéè¨å¦çã¨æ¨è«ããã¾ãå©ç¨ããã¬ã³ã¡ã³ãã¼ã·ã§ã³ã¨ã³ã¸ã³ï¼ã¨ãã®äºæµï¼ãå¾æ¥ããã®ãã£ã«ã¿ãªã³
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}