Let it crash: what Python can learn from Erlang. Benoit Chesneau https://pycon.jp/2015/ja/schedule/presentation/69/
æ®æ®µPythonãæ¸ãã¦ãããã©ãããä¸ç´è ã®æ¸ããã³ã¼ãããèåãªã©ã¤ãã©ãªã® ã³ã¼ããè¦ããæã«ããªã«ãã£ã¦ããåãããªãã¨æã£ããã¨ã¯ããã¾ãããï¼ æ¬ã»ãã·ã§ã³ã§ã¯ãPythonã«ãããã¡ã¿ããã°ã©ãã³ã°ã«é¡ããæ©è½ã® æ¦è¦ã説æãã¾ãã以ä¸ã®ãããªãããã¯ãæ±ãã¾ã - Decorator - Descriptor - MetaClass - SpecialMethod - ãã®ä» ä¾ãã°MetaClassã®ä»çµã¿ãç解ããã°ãã¯ã©ã¹å®ç¾©ã®ä»çµã¿ãã®ãã®ã ã«ã¹ã¿ãã¤ãºãããã¨ãå¯è½ã«ãªãã¾ãã ãããã®æ©è½ãã©ã®ãããªç¨éã§ä½¿ããã¦ãããã代表çãªãã¬ã¼ã ã¯ã¼ã¯ã ã©ã¤ãã©ãªã®ä¾ã説æãã¦ãããã¡ã¿ããã°ã©ãã³ã°ãã©ã®ããã«æ´»ç¨ããã¦ããã ãç¥ã£ã¦ããã ããã¨ãã§ãã¾ãã
ã¡ã¾ãã§ããDeep Learningã¹ã²ã¼ãã¨ãã声ãã¡ãã»ãèãã¾ãããDeep Learningãããããã¨ãã声ãèãã¾ããããããã®æ¬¡ã«ã§ãè¨èãã誰ããã£ã¦ãã誰ãã§ãã人ããªãï¼ãã¨ããæãã§ããå°ãªãã¨ãç§ã®å¨ãã«ã¯ã ã¾ããgithubã§Deep Learningã®ãã¬ã¼ã ã¯ã¼ã¯theano ãChainerã使ã£ãå®è£ ãè¦ããã¾ãããç´ æµãªå®è£ ã¯ãã¾ãè¦ããã¾ãããã§ãæãã®ã¯ãã¿ããªã©ã®ãããDeep Learningã®Pythonã³ã¼ããä½ãã¦ãããã ããï¼ã¨ãããã¨ã§ãã ããã§ãtheanoã®ã©ããã¼ã¯ã©ã¹ããããã10åä½ãã¤ãã£ã¦ã¯å£ããç¹°ãè¿ããChainerãæè¿ä½¿ãå§ããèè ããChainerã使ã£ãå®è£ ã«ã¤ãã¦ããã£ã¤ãèªãããã¨æãã¾ãã Deep Learningã®ç 究ååã¯ãã¨ãã®ã¯ãã¾ãããå®è£ ã®è©±ã§ãã GPUåããæ¹æ³ã¨ãã®é©ãã¹ãå¹æã
æ®æ®µä½¿ã£ã¦ããããã°ã©ãã³ã°è¨èªã使ãåã«ã¯ç¹ã«æ¥ã«ãããã¨ã¯ç¡ãã¨æãã®ã§ããããããããã£ããã©ãã¾ã§ã·ã³ãã«ã«å½¢å¼åãããã¨ãã§ããã®ã§ãããããããã§Pythonã®lambdaã¨ããæ§æãç´¹ä»ããããã使ãã ãã§ãã©ãã ãè¤éãªè¡¨ç¾ãã§ããã試ãã¦ãããã¨æãã¾ããã¡ãªã¿ã«ãè¦æ±ãããPythonã®ã¬ãã«èªä½ã¯åç´ã§ãããããç¨åº¦ããã°ã©ãã³ã°ã®çµé¨ãããæ¹ãèãããã¨ãç解ãæ·±ã¾ãå 容ã«ãªããã¨æ³å®ããã¾ãã ãã®ãã¼ã¯ã«ãã£ã¦ãã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ã«ãããä¸ã¤ã®ç¥è¦ãå¾ãããããã«å°ãã§ãèå³æã£ã¦ãããããã¨ãæå¾ ãã¦ãã¾ããç¹ã«ãåç´ãªè¦åã«ãã£ã¦è¤éãªè¦åãçã¿ã ããããã¨ã«ãã£ã¦ãã·ã³ãã«ã«èãããã¨ã®éè¦æ§ãããããã¯ä¸ã¤ã®ã¢ããã¼ãã®ä»æ¹ã®ã¤ã³ã¹ãã¬ã¼ã·ã§ã³ãçã¾ãããã¨ãã¾ãåç´ãªå®åã«ç´çµããå 容ã§ã¯ãªããçè«ãå¦ã¶ãã¨ã«ãã£ã¦ãããæ·±ãç解ãçã¾ãããã¨ãæ
æ©æ¢°å¦ç¿ã®åé¡ãå帰ã¢ãã«ã®æ§ç¯ãã¯ã©ã¹ã¿ãªã³ã°ã®ä¸è¬çãªèãæ¹ã¨æµããscikit-learnã©ã¤ãã©ãªã«ããå®è¡æ¹æ³ãscikit-learnã®APIãåºæ¬çãªã¯ã©ã¹ã«ã¤ãã¦ç¿å¾ãããã¨ãç®æ¨ã§ãã Pythonã®æ©æ¢°å¦ç¿ã©ã¤ãã©ãªscikit-learnãç¨ãã¦ãæ©æ¢°å¦ç¿ã®å®è¡æ¹æ³ã«ã¤ãã¦è©³ãã説æãã¾ãã以ä¸ã®å 容çãæ±ãã¾ãã - ãã¼ã¿ã®åå¦ç - äºæ¸¬ã¢ãã«æ§ç¯ã®ããã¼ - äºæ¸¬ã¢ãã«ã®ãã¥ã¼ãã³ã°ï¼äº¤å·®æ¤è¨¼ããã¤ãã¼ãã©ã¡ã¼ã¿æé©åçï¼ - äºæ¸¬ã®è©ä¾¡ - ãã¤ãã©ã¤ã³ã«ããã¢ãã«æ§ç¯ - ã¢ãã«ã®æ°¸ç¶å - ã¯ã©ã¹ã¿ãªã³ã° å¿ è¦ã«å¿ãã¦ãã¼ã¿åæã®Pandasãå¯è¦åã®matplotlib/seabornãªã©ã使ç¨ãããããåããã¦èª¬æãã¾ãã åèæç® ---- - Sebastian Raschka, [Python Machine Learning][1]ï¼Pack
ç·å代æ°ã¯ç¾ä»£æ°å¦ã®åºç¤ããªãåéã§ãããçµ±è¨å¦ãæ©æ¢°å¦ç¿ãªã©ã«å¿ç¨ããããªã©ç工系ã®å¦åã«ã¨ã£ã¦å¿ é ã®æé¤ã§ãã ä¸æ¹ã§ãç·å代æ°ã¯é«çå¦æ ¡ã¾ã§ã®æ°å¦ã¨ã¯é¦´æã¿ã®ãªãäºæãå¤ãããããªãã¾ã¾ã«ãªã£ã¦ãã人ãå¤ãã§ãã æ¬çºè¡¨ã§ã¯ãã®ç·å代æ°ãç解ãã¹ãPythonãæ°å¼å¦çã©ã¤ãã©ãªSympyãé§ä½¿ãã¦ç·å代æ°ã®æç§æ¸ãèªç ´ããæ¹æ³ãçºè¡¨ãã¾ãã
TensorFlow is a new Open Source framework created at Google for building Deep Learning applications. I will discuss how it compares to other Python machine learning libraries like Theano or Chainer. Finally, I will discuss how trained TensorFlow models could be deployed into a production system using TensorFlow Serve. The audience of this talk are DevOps engineers, Developers, and System Administr
Python ã® C æ¡å¼µã¢ã¸ã¥ã¼ã«ã®æ¦è¦ã¨ C æ¡å¼µã¢ã¸ã¥ã¼ã«ãéçºããæ段ã¨ãã¦ã©ããã£ããã®ããããã確èªãã¾ããããã¦ãGo è¨èªãã C è¨èªã¨ããåãããããã®ä»çµã¿ãæ©è½ã«ã¤ãã¦ãã¿ã¦ããã¾ãã Python ã§ã¯æãã C æ¡å¼µã¢ã¸ã¥ã¼ã«ãéçºããä»çµã¿ãããã主ã«ã¯ã·ã¹ãã ããã°ã©ãã³ã°ãããã©ã¼ãã³ã¹ãè¦æ±ãããåé㧠C æ¡å¼µã¢ã¸ã¥ã¼ã«ã使ã£ãã©ã¤ãã©ãªï¼ããã±ã¼ã¸ãæ°å¤ãæä¾ããã¦ãã¾ããç´æ¥ C è¨èªãæ¸ããªãã¦ã Cython ã®ããã« Python ãã¼ã¹ã®è¨èªã§æ¸ããã³ã¼ããã³ã³ãã¤ã«ã㦠C è¨èªã®ã³ã¼ããçæããã¨ãã£ãæ¹æ³ãããã¾ãã ä¸æ¹ Go 1.5 ããå ±æã©ã¤ãã©ãª (.so) ãçæã§ããããã«ãªãã¾ãããããã«ãããGo è¨èªã§éçºããã©ã¤ãã©ãªã C è¨èªããå¼ã³åºãã¾ãããã㧠Go ã§éçºããã©ã¤ãã©ãªã C çµç±ã§ Python ã
Deep Learningï¼Convolutional Neural Networkï¼ã¯ç¹ã«ç»åèªèã®åéã§ç®è¦ã¾ããææãããã¦ãã¾ããä»åã¯Convolutional Neural Networkã使ã£ãç»åèªèã®æ¹æ³ãåã³ããããå®æ½ããã«ä¾¿å©ãªã½ããã¦ã§ã¢ã®èª¬æãè¡ãäºå®ã§ãã ç»åèªèã«å¦ã¶Deep Learning 1.ç»åèªèã®èæ¯ã¨ã§ããã㨠ç»åèªèã®ããã¾ã§ã®ç®è¦ã¾ããææã¨å®éã«ããããã㨠ä½ãã§ããããã話ãããã¨æãã¾ãã âGoogleã®ç«ãILSVRCã®è©± ç¾å¨ã使ããã¦ããã½ããã¦ã§ã¢ã®è©±ï¼é¡èªèã¨ãï¼ 2.ç»åèªèã®ä¸è¬çãªããã¼ã¨ãã®èª¬æ æ¬é ç®ã§ã¯ãç»åèªèã«ããã¦ã©ããã£ãè¦ç´ ãå¿ è¦ããç´¹ä»ãã¾ãã ãã¼ã¿ã»ãããéãããDeepLearningã®å¦ç¿ç°å¢ä½ããªã© 3.ããã¼ã«ã¤ãã¦ã®è©³ç´°ãªèª¬æ â ãã¼ã¿ã»ããã®æ§ç¯æ¹æ³ â¡ç»åãã¼ã¿ã«ã¤ãã¦ã®èª¬æ
å¿åãã¼ã¯ ããã¯å¿åããããã¼ã¯ã§ããèãããã¨æããã¼ã¯ãSNSã§æ¡æ£ãã¾ããããé¸èæã«åèã«ããã¦ããã ãã¾ãã talk Machine Translation for Identifiers in Python Programs (en) ã¹ãã¼ã«ã¼ Ren-yuan Lyu , Che-Ning Liu , Calvin Lyu This is a demonstration for a two-year research project sponsored by Taiwan government, which is aimed to translating Python programs into traditional Chinese in order to help those who feel interested in learning computer prog
#ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ãã¬ã¼ã ã¯ã¼ã¯ã§ããChainerã§å§ãã対話Botã®ä½æ 2016å¹´ã¯LINE, Facebookãªã©ãAPIãå ¬éãããã¨ã§Botã®æ´»èºããå ´ãã¾ãã¾ãå¢ãã¦ãã¦ãã¾ãã決ããã¡ã§åçãè¿ããããåä¼æ¥ãæä¾ãã¦ããAPIã使ã£ã¦å¯¾è©±ç¨ã®Botãä½æãããã¨ãå¯è½ã§ããããèªèº«ã§ä¸èº«ãç解ãã¤ã¤è³¢ããªã対話Botãä½æãããããã¾ãããï¼ ä»åã¯ä¸è¨ã®å 容ããç´¹ä»è´ãã¾ãã - 話é¡ã®æ¨å®æ¹æ³ - 対話å 容ã®å¦ç¿æ¹æ³ - Slackãªã©ã®å種APIã¨ã®é£æº - Dockerã«ããéçºç°å¢ã®æä¾ ãã¼ã¸ã§ã³ã¢ããå¾ã«è¿½å äºå®å 容 - Botã®ãã£ã©ã¯ã¿ã¼æ§ã®å¤ææ¹æ³ - Botãç¨ããæ¤ç´¢ã·ã¹ãã - ææ ãèæ ®ããBot çºè¡¨ã¾ã§ã«ãã¼ã¸ã§ã³ã¢ããããã°ä¸è¨ã®å 容以ä¸ã®ãã¨ãã話ããã¨æãã¾ãã ããªãã対話Botã®ä½æã«ãã£ã¬ã³ã¸ãã¦ã¿ã¾ãããï¼ PS:çºè¡¨
Pythonã®ä»£è¡¨çãªã¯ãã¼ã©æ§ç¯ãã¬ã¼ã ã¯ã¼ã¯ã§ããScrapyã®æ¦è¦ãç解ãï¼ç®çã«å¿ããã¯ãã¼ã©æ§ç¯æ¹æ³ãå¦ã¶ãã¨ãç®çã¨ãã¾ãï¼ã¾ãã¯ãã¼ã©æ§ç¯ã®éã«æ³¨æããªããã°ãããªãç¹ï¼robots.txtï¼å©ç¨è¦ç´ çï¼ãï¼ã¯ãã¼ã©ãæ¥ã éç¨ããããã®Tipsï¼ãã°ç®¡çï¼ãã¼ã¢ã³åçï¼ã«ã¤ãã¦ç¥èãæ·±ã¾ãã¾ãï¼ ãã¼ã¿åæåéãæ¥æé·ããã¨å ±ã«ï¼åæ対象ã¨ãªãæ å ±ãWebä¸ããèªåçã«åéãããWebã¯ãã¼ã©ï¼Web crawlerï¼ãã¨å¼ã°ããæè¡ã注ç®ãéãã¦ãã¾ãï¼ æ¬çºè¡¨ã§ã¯Pythonã®ä»£è¡¨çãªã¯ãã¼ã©æ§ç¯ãã¬ã¼ã ã¯ã¼ã¯Scrapyãå©ç¨ãã¦ï¼ç®çã«å¿ããã¯ãã¼ã©ãæ§ç¯ã»éç¨ããæ¹æ³ã«ã¤ãã¦å¦ã³ã¾ãï¼ããã§ããç®çã«å¿ããã¯ãã¼ã©ã¨ã¯ï¼ç¹å®ã®Webãµã¤ãããµã¼ãã¹ã®æ å ±ã«çç®ãé¸æçã«ã¯ãã¼ãªã³ã°ãã¦ããã¯ãã¼ã©ãæãã¾ãï¼çºè¡¨ä¸ã§ã¯ï¼ã¯ãã¼ã©æ§ç¯æ¹æ³ã«å ãã¦ã¯ãã¼ã«å¯¾è±¡ã®ãµã¤ã
å¿åãã¼ã¯ ããã¯å¿åããããã¼ã¯ã§ããèãããã¨æããã¼ã¯ãSNSã§æ¡æ£ãã¾ããããé¸èæã«åèã«ããã¦ããã ãã¾ãã talk Building An Interpreter In RPython(en) ã¹ãã¼ã«ã¼ Juozas Kaziukenas To understand how dynamic programming languages get executed I set out to build a PHP interpreter. Not a joke, I really did it and it worked! The final result was a well-tested piece of Python code, which could be compiled to be very performant as well. The goal of this
ããã«ã¡ã¯ãPyCon JP 2016 ã¹ã¿ããã®å «ç¥ã§ãã ä»å¹´ã®ãã¼ãã¼ãã¹ãã¼ã«ã¼ãã¤ãã«æ±ºã¾ã£ãã®ã§ããç¥ãããã¾ãï¼ ä¸äººç®ã¯Jessica McKellarããã§ãï¼ Jessicaããã¯Boston Pythonã¨ããä¸çä¸å¤§ããªPython User Groupã®éå¶ããTwistedçã®æåOSSã®ã¡ã³ãããããã¦ãã¾ããã¾ããåç±³ã®PyConã§ã¯Diversity Outreach Chairã¨ãã¦ç´ æ´ãããæ´»èºãããã¦ãã¾ãã 以ä¸ã¯Jessicaããã«é ãããããã£ã¼ã«ã§ãã Jessica McKellar is an entrepreneur, software engineer, and open source developer from San Francisco, California, USA. She is a former Director for
Pythonã§ã¿ããåä½ãã¹ã¯ã¤ãåä½ãªã©ã®Natural User Interface(NUI)対å¿ã®ã¢ããªã±ã¼ã·ã§ã³ãéçºããããã®ãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦KivyããããKivyã¯WindowsãiOSã¨ãã£ãè¤æ°ã®ãã©ãããã©ã¼ã ã«å¯¾å¿ãããã¬ã¼ã ã¯ã¼ã¯ã§ãããä¸åº¦Kivyã§ã³ã¼ããæ¸ããã¨ã«ãã£ã¦è¤æ°ã®ç°å¢ã§åä½ããã¢ããªã±ã¼ã·ã§ã³ãéçºãããã¨ã§ããã æ¬ãããã¼ã¶ã«ã§ã¯ãKivyã®å©ç¹ã使ç¨æ¹æ³ãå ±æãããã¾ããããã¥ã¡ã³ãã®ç¿»è¨³ã«ã¤ãã¦ãå°ã触ããã ## ã¯ããã« Kivy[1]ã¯Pythonã§éçºããããªã¼ãã³ã½ã¼ã¹ã®NUIéçºç¨ãã¬ã¼ã ã¯ã¼ã¯ã§ããããã¼ã¸ã§ã³1.0.0ã®ãªãªã¼ã¹ã¯2011å¹´ã§LGPL3ã®ä¸ã§å ¬éããã(ãã¼ã¸ã§ã³1.7.5ããMIT)[1][2]ãæ¬ãã¬ã¼ã ã¯ã¼ã¯ã¯æ¯è¼é©å®¹æã«ã¿ãããã¹ã¯ã¤ãã¨ãã£ãåä½ã«å¯¾å¿ããã¢ããªã±ã¼ã·ã§ã³ãéçºãããã¨ãå¯è½ã§ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}