並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 205件

新着順 人気順

langchainの検索結果1 - 40 件 / 205件

langchainに関するエントリは205件あります。 AILLMChatGPT などが関連タグです。 人気エントリには 『これはもう実質AGIでは? AIが勝手にブラウザを操作していろいろやってくれちゃう BrowserUseが爆誕|shi3z』などがあります。
  • これはもう実質AGIでは? AIが勝手にブラウザを操作していろいろやってくれちゃう BrowserUseが爆誕|shi3z

    今日もいつものようにシラスでデイリーAIニュースを配信していると、とんでもないものにでくわした。 もうタイトルに書いてあるけど、AIが勝手にブラウザを操作して色々やってくれてしまう、その名もBrowserUseだ。 インストールは超簡単。 macなら以下の二行だけだ。 $ pip install browser-use $ playwright install使うのも超簡単だが、コマンドラインに落ちるのが怖い人々には簡単に見えないかもしれない。環境変数のOPENAI_API_KEYとかにAPIキーを入れておくこと。 $ python >>> from langchain_openai import ChatOpenAI >>> from browser_use import Agent INFO [browser_use] BrowserUse logging setup complete

      これはもう実質AGIでは? AIが勝手にブラウザを操作していろいろやってくれちゃう BrowserUseが爆誕|shi3z
    • Jupyter AIが出た!試した!!すごい!!! - Qiita

      ターミナルにトークン付きのURLが表示されますので、ブラウザでアクセスします。 起動しました。 チャットインターフェイス 左パネルにチャットのボタンが追加されています。 Welcomeメッセージが表示されます。 language modelとembedding modelを選択します。 これで準備完了です。 チャットができます。 おお! ノートブックについて質問できる ただチャットができるだけではありません。ノートブックのセルに対して範囲選択をすると、チャットエリアの下部にInclude selectionとReplace selectionが表示されます。 Include selectionだと選択したコードを含んだ形で質問ができます。 すっげー! (DefaultActor pid=473) (DefaultActor pid=473) (DefaultActor pid=473) >

        Jupyter AIが出た!試した!!すごい!!! - Qiita
      • ChatGPTに自社データを組み込んで新しい検索体験を模索してみました|masa_kazama

        イントロChatGPTやBing、NotionAIなどの大規模自然言語モデル(LLM)を活用したサービスが注目を集めています。対話、要約、翻訳、アイデア生成などの多様なタスクにおいて、とても性能が高いです。ただ、ChatGPTでは、ときどき嘘が混じっていたり、文献が捏造されたりすることがあります。 ChatGPTとの対話画面(結果の書籍は存在しない)それを防ぐために、BingやPerplexityでは、文献を引用した上で、なるべく嘘が紛れ込まない形で回答してくれます。 Perplexityでは引用もつけてくれるしかし、これらのAIは、Web上の公開されている一部のデータを元に学習しているので、公開されてないデータに対しては当然ながら、正しく回答できません。 そこで、この記事では、自社が保有しているデータをChatGPTに組み込んで、自社オリジナルのPerplexityのようなシステムを作る

          ChatGPTに自社データを組み込んで新しい検索体験を模索してみました|masa_kazama
        • ChatGPTで独自データを学習させて回答してもらう方法 - Qiita

          ChatGPT,使っていますか? ChatGPTは文章を要約したり、プログラム作ってくれたり、一緒にブレストしてくれたりして本当に便利なのですが、社内情報などの独自データに関する情報については回答してくれません。 プロンプトに情報を記述して、そこに書かれている情報から回答してもらう方法もありますが、最大トークン4000の壁がありますので、限界があるかと思います。 この課題についてなんとかならないかと考えて色々と調べて見たところ、解決する方法が見つかり、いろいろと検証をして見ましたのでその結果をシェアしたいと思います。 サンプルコード(GoogleColab) 百聞は一見にしかずということで、実際に試したサンプルは以下にありますので、まずは動かしてみることをお勧めします。 このコードを上から順番に動かすと、実際にインターネット上から取得したPDFファイルに関する内容をChatGPTが回答して

            ChatGPTで独自データを学習させて回答してもらう方法 - Qiita
          • つくりながら学ぶ!AIアプリ開発入門 - LangChain & Streamlit による ChatGPT API 徹底活用

            つくりながら学ぶ!AIアプリ開発入門 - LangChain & Streamlit による ChatGPT API 徹底活用 この本では、LangChain と Streamlit を用いて、ChatGPT APIを活用するAIアプリを開発していきます。つくりながら学ぶことを重視し、簡単なチャットアプリ開発から始めて、Embeddingを活用するアプリ開発まで、ステップバイステップで学べます。 AIアプリをローカル環境で開発した後は、WEB上にデプロイする方法も学びます。クラウドの知識もほぼ必要なく、ランニングコストも掛からない方法で行うため、ぜひ作ったアプリを公開することにチャレンジしてみましょう。 500円と設定していますが投げ銭用です。本文は全て無料で読めます。

              つくりながら学ぶ!AIアプリ開発入門 - LangChain & Streamlit による ChatGPT API 徹底活用
            • 話題の ChatGPT + LangChain で、膨大な PDF ドキュメントの内容を爆速で把握する - Qiita

              話題の ChatGPT + LangChain で、膨大な PDF ドキュメントの内容を爆速で把握するPDFOpenAIChatGPTlangchain記事投稿キャンペーン_ChatGPT はじめに 本記事では、ChatGPT と LangChain の API を使用して、PDF ドキュメントの内容を自然言語で問い合わせる方法を紹介します。 具体的には、PDF ドキュメントに対して自然言語で問い合わせをすると、自然言語で結果が返ってくる、というものです。 ChatGPT と LangChain を使用することで、下記のような複数ステップの仕事を非常に簡単に実行させることができます。 PDF ドキュメントからテキストを抽出して複数に分割する 分割したテキストからテキスト間の関連を表すベクターデータを作成する 作成したベクターデータをベクターストアに格納しておく ChatGPT に外部から与

                話題の ChatGPT + LangChain で、膨大な PDF ドキュメントの内容を爆速で把握する - Qiita
              • ゼロからRAGを作るならこんなふうに

                どんな人向けの記事? これからRAGを作ってみたい DifyやLangChainにこだわらず、自分で開発をハンドリングしたい ベクトルDBや埋め込みモデルの選定の勘所をサッと知りたい ここではRAGとは何かのような話題は扱いません。 RAGが、ほぼAI活用の現実的な最適解になりつつある LLMは高度な知的タスクを実行可能である。 そんな理解が世界に広まっていく中で、企業は自らが蓄えたデータをLLMに組み合わせてどう活用するか躍起になっています。これからはビッグデータだ!という時代を経ているため、情報インフラに投資した企業も多く、AIでデータを活用する流れはもはや確定路線と言えます。 この問題を解決する手法として一番最初に思いつくのは、モデル自体を改変するファインチューニングです。しかし、ファインチューニングにはいくつかの実用上の問題があります。ファインチューニング自体に専門知識が必要である

                  ゼロからRAGを作るならこんなふうに
                • RAG入門: 精度改善のための手法28選 - Qiita

                  RAGの精度改善するために何があるかを学びました。基本系のNaive RAGを知っている人向けの記事です。 方法が多すぎるので、Youtubeの「RAG From Scratch」を中心に少し整理してみました。LangChainをよく使っているので、LangChain出典が多いです。 全体像 まずは、RAGの全体像。Indexingが同じ流れにあるのが少しわかりにくいのですが、実行タイミングとしてはRAGの前準備としてやっておきます。 画像出典: RAG from scratch: Overview もう少し粒度を細かくした図です。 画像出典: RAG from scratch: Overview 表形式で分類します。Generationだけ少し特殊です。 大分類 中分類 内容

                    RAG入門: 精度改善のための手法28選 - Qiita
                  • 「ChatGPT/LangChainによるチャットシステム構築 」という書籍が素晴らしかったのでNode.jsでも書いてみた - selmertsxの素振り日記

                    はじめに 「ChatGPT/LangChainによるチャットシステム構築」 という本が素晴らしかったので、ちゃんと身につけるために Python だけじゃなくて Node.js でも動かしてみました。同じことをやろうとした人のために、ここにそのときの記録を残します。特に callbacksやmemoryについて、詳細に記載しようと思います。 書籍の説明につながるようなことはできる限り書きません!めっちゃ良書なので、ご興味持っていただけた方は購入してもらえますと 🙏 5章まではPython固有のToolを利用しており、6章の中身は7章とかなり近いところがあるので、7章のプログラムだけここに記載します。LangChainの学習に注力したいので、Serverelss Frameworkに関連するコードは省略しました。また、Momentoや @slack/bolt に関する説明はしません。 プロ

                      「ChatGPT/LangChainによるチャットシステム構築 」という書籍が素晴らしかったのでNode.jsでも書いてみた - selmertsxの素振り日記
                    • サクッと始めるRAG開発【LangChain / Python】

                      この本では、初心者・入門者の方に向けて、RAGの知識や使い方を体系的にまとめました。少し難易度の高い内容になりますが、本書の中で事前に学んでおくべき項目を示しているため、ご安心ください。 【概要】 ・内容:RAGの概要【入門者向けの基礎知識】、RAGの処理フロー【In-Context Learning / Embedding / Vector Search】、RAGのビジネス活用ロードマップ【大企業向け】、RAGの実装アプローチ、RAGの大分類【Document RAG】、RAGの大分類【SQL RAG】、RAGの大分類【Graph RAG】、RAGの精度評価アプローチ、RAGの精度評価方法【LangChain Evaluation】、RAGの精度評価方法【Ragas】、RAGの精度改善手法【データ品質 / プロンプト品質 / ベクトル検索】、RAGの精度改善のためのLLMOps概論、LL

                        サクッと始めるRAG開発【LangChain / Python】
                      • サクッと始めるプロンプトエンジニアリング【LangChain / ChatGPT】

                        この本では、初心者・入門者の方に向けて、プロンプトエンジニアリングの知識や使い方を体系的にまとめました。 【概要】 ・内容:プロンプトエンジニアとは?、プロンプトエンジニアの必須スキル5選、プロンプトデザイン入門【質問テクニック10選】、LangChainの概要と使い方、LangChainのインストール方法【Python】、LangChainのインストール方法【JavaScript・TypeScript】、LCEL(LangChain Expression Language)の概要と使い方、LangSmithの概要と使い方【LLMOps】、LangServeの概要と使い方【API】、LangGraphの概要と使い方【Multi-Actor】、OpenGPTsの概要と使い方【OSS版のGPTs】、LangChain Evaluations【生成物の評価方法】、LangChain Hub、Op

                          サクッと始めるプロンプトエンジニアリング【LangChain / ChatGPT】
                        • 最強のツール「LangSmith」が登場した話【Python / LangChain】

                          【📩 仕事の相談はこちら 📩】 お仕事の相談のある方は、下記のフォームよりお気軽にご相談ください。 https://forms.gle/G5g1SJ7BBZw7oXYA7 もしもメールでの問い合わせの方がよろしければ、下記のメールアドレスへご連絡ください。 info*galirage.com(*を@に変えてご送付ください) 🎁 「生成AIの社内ガイドライン」PDFを『公式LINE』で配布中 🎁 「LINEで相談したい方」や「お問い合わせを検討中の方」は、公式LINEでご連絡いただけますと幸いです。 (期間限定で配信中なため、ご興味ある方は、今のうちに受け取りいただけたらと思います^^) https://lin.ee/3zRuqKe おまけ①:生成AIアカデミー より専門的な「生成AIエンジニア人材」を目指しませんか? そんな方々に向けて、「生成AIアカデミー(旧:生成AIエンジニア

                            最強のツール「LangSmith」が登場した話【Python / LangChain】
                          • ChatGPTとLangChainで何でもできるAIを作る - Qiita

                            この記事は記事投稿キャンペーン_ChatGPTの記事です。 以下は、個人開発した最新のものになります. CreateToolAGI:ChatGPTとLangChainで何でもできるAI はじめに こんにちは、fuyu-quantです. 今回はLangChainという「大規模言語モデルを使いこなすためのライブラリ」の紹介とその機能を発展させるために作った新しいライブラリlangchain-toolsの説明およびその可能性について共有したいと思います. LangChainの機能であるtoolを使うことで,プログラムとして実装できるほぼ全てのことがChatGPTなどのモデルで自然言語により実行できるようになります.今回は自然言語での入力により機械学習モデル(LightGBM)の学習および推論を行う方法を紹介します. 記事に誤り等ありましたらご指摘いただけますと幸いです。 (※この記事の「Chat

                              ChatGPTとLangChainで何でもできるAIを作る - Qiita
                            • 生成AIのRAG構成を大手3社(AWS、Azure、Google Cloud)で徹底比較してみた - G-gen Tech Blog

                              G-gen の堂原と又吉です。当記事では、Amazon Web Services(AWS)、Microsoft Azure、Google Cloud(旧称 GCP)が提供するフルマネージドな RAG サービスの比較を行います。 はじめに 当記事について RAG とは 3社比較 前提条件 機能比較 料金シミュレーション 想定シナリオ AWS Azure Google Cloud 総評 AWS Azure Google Cloud 詳細の解説 Knowledge bases for Amazon Bedrock(AWS)の詳細 構成図 プロダクト一覧 Knowledge bases for Amazon Bedrock Amazon S3 Amazon OpenSearch Service できること 検索 対応データソース 料金 概要 基盤モデル利用料金 ベクトルデータベース料金 Azure

                                生成AIのRAG構成を大手3社(AWS、Azure、Google Cloud)で徹底比較してみた - G-gen Tech Blog
                              • LLMを使ったアプリケーション開発の基本とLangChain超入門

                                書籍はこちら:https://www.amazon.co.jp/dp/4297138395 === ChatGPTのAPIが公開されたころから、多くの組織が大規模言語モデル(LLM)を使ったアプリケーション開発に取り組むようになりました。LLMを使ったアプリケーション開発では、「LangChai…

                                  LLMを使ったアプリケーション開発の基本とLangChain超入門
                                • OpenAI Function callingで複雑なタスクを簡単に実現 - Qiita

                                  Function callingの登場 6/13ごろにOpenAI社から発表された新しいgpt-3.5-turboのインスタンスにFunction callingという機能が追加され話題を呼んでいます。このFunction calling、非常に強力な機能なのですが、仕組みがいまいちピンとこないといった方も多いのではないでしょうか。筆者もその一人で、ドキュメントを3回くらい読んでもしっくり来なかったのですが、実際にFunction callingを実装してみてなるほど、これは凄いな、となったので紹介します。 ここでは、具体的なソースコードを紹介しながら、実際に動作するサンプルを作っていきます。 TL;DR ソースコードだけ見られればいい!という方は以下へ https://github.com/canada/openai-function/blob/master/app.py ソースコードを

                                    OpenAI Function callingで複雑なタスクを簡単に実現 - Qiita
                                  • ChatGPT APIを取り巻くライブラリ 〜LangChainとguidanceの紹介 | gihyo.jp

                                    こんにちは! 逆瀬川(@gyakuse)です! 前回はOpenAIが公開しているChat APIとWhisper APIを用いて議事録文字起こしアプリケーションを作ってみました。今回は、Chat APIを便利に使うためのライブラリであるLangChainとguidanceを紹介していきます。 なぜ便利に使うためのライブラリが必要なのか? 単純にChat APIにリクエストを送るだけであれば、各言語に用意されたライブラリを使うだけで良いでしょう。たとえば、Pythonにおいてはopenai-pythonが用意されています。前回紹介したとおり、Chat APIを使うだけなら以下のようなリクエストを作るだけで済みます。 import openai openai.api_key = "sk-..." # APIキー completion = openai.ChatCompletion.create

                                      ChatGPT APIを取り巻くライブラリ 〜LangChainとguidanceの紹介 | gihyo.jp
                                    • いまこそ学ぶLLMベースのAIエージェント入門―基本的なしくみ/開発ツール/有名なOSSや論文の紹介

                                      大規模言語モデル(LLM)の応用例として「AIエージェント」が大きな話題の1つとなっています。 AIエージェントは、与えられた目的に対して、何をすべきか自律的に判断して動作します。 たとえば、必要に応じてWeb上の情報を検索して回答してくれたり、試行錯誤しながらプログラムを実装してくれたりします。…

                                        いまこそ学ぶLLMベースのAIエージェント入門―基本的なしくみ/開発ツール/有名なOSSや論文の紹介
                                      • LangChainを使わない - ABEJA Tech Blog

                                        TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                          LangChainを使わない - ABEJA Tech Blog
                                        • 1600以上のAPIを適切に呼び出してAIに付き物の「幻覚」を大幅に減らす言語モデル「Gorilla」が公開される

                                          近年はChatGPTやBardなどの対話型AIが相次いでリリースされ、人間の質問や呼びかけに対して非常に高精度な回答ができることで注目を浴びていますが、これらの対話型AIは時に真実ではないことを真実かのように話す「ハルシネーション(幻覚)」を起こすことがあります。そこで、膨大な数のAPIから適切なものを呼び出し、幻覚を大幅に減らすことができる言語モデル「Gorilla」を、アメリカ・カリフォルニア大学バークレー校とMicrosoft Researchの研究チームが公開しました。 Gorilla: Large Language Model Connected with Massive APIs https://arxiv.org/abs/2305.15334 Gorilla https://gorilla.cs.berkeley.edu/ GitHub - ShishirPatil/gori

                                            1600以上のAPIを適切に呼び出してAIに付き物の「幻覚」を大幅に減らす言語モデル「Gorilla」が公開される
                                          • 社内用語集を気軽に質問できるSlackBotを作ってみた (RAGの応用アプリ) - ABEJA Tech Blog

                                            こんにちは!株式会社 ABEJA で ABEJA Platform 開発を行っている坂井(GitHub : @Yagami360)です。 LangChain を使用すれば、RAG [Retrieval Augment Generation] を使用した LLM アプリケーションを簡単に作成できるので便利ですよね。 今回 LangChain での RAG を使用して、LLM が学習に使用していない特定ドメインでの用語を応答する Slack ボットをさくっと作ってみたので共有します。 本コード一式は、以下の GitHub レポジトリに保管しています。 github.com 使い方 コード解説 アーキテクチャ RAG の仕組み ヒューマンインザループによる継続的品質改善 まとめ We Are Hiring! 使い方 事前準備として{用語集スプレッドシートの作成・Slack アプリの初期設定・各種

                                              社内用語集を気軽に質問できるSlackBotを作ってみた (RAGの応用アプリ) - ABEJA Tech Blog
                                            • GPT-4 で Minecraft を自動プレイする Voyager を動かしてみた - Qiita

                                              概要 GPT-4 に全自動で Minecraft をプレイさせる論文 "Voyager: An Open-Ended Embodied Agent with Large Language Models" を紹介します。 Voyager は、継続的・段階的に複雑なタスクを学習し続けることができ、マップ開拓や新アイテム獲得の能力で既存手法に勝ると主張されています。 既存手法との違い LLM にツールや外部 API を与えて自律的に計画・行動させるアルゴリズムと言うと、ReAct, Reflexion, Auto-GPT などが特に有名です。 これらと Voyager の一番の差別化部分は、Iterative Prompting Mechanism および Skill Library と呼ばれるコンポーネントです。 Voyager はボットを操作するために Mineflayer という Java

                                                GPT-4 で Minecraft を自動プレイする Voyager を動かしてみた - Qiita
                                              • TypeScriptでGPT-3.5を使ってChatGPTクローンを作る1 - GPTで検索エージェント

                                                OpenAI が提供している ChatGPT は非常に面白いですね。今年以後、GPTやChatGPT周りがさらに流行ると思います。 この記事は、TypeScriptでChatGPTクローンを作る第一弾です。長くなりすぎるため、この記事では、GPTを使った検索エージェントを実行するまでを取り上げます。 検索エージェントは「ぼっち・ざ・ろっくの作者は?」と尋ねたら検索エンジンとGPTを使って「はまじあき」という結果を生成できる技術です。 またこの記事や、続く記事でLangChainのプロンプトをあれこれ読み解いていこうと考えています。 筆者は機械学習の初心者であるため、間違ったことが書かれている可能性があります。間違いがあった場合は、ぜひご指摘いただけると幸いです。 なお、この記事では添削にChatGPTおよびGPT-3.5を使っています[1]。 どうやってTypeScriptでChatGPT

                                                  TypeScriptでGPT-3.5を使ってChatGPTクローンを作る1 - GPTで検索エージェント
                                                • LangChain クイックスタートガイド - Python版|npaka

                                                  Python版の「LangChain」のクイックスタートガイドをまとめました。 ・LangChain v0.0.329 (2023/11/3) 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント 2. LangChain のモジュール「L

                                                    LangChain クイックスタートガイド - Python版|npaka
                                                  • LangChain で社内チャットボット作ってみた

                                                    こんにちは、クラウドエース SRE ディビジョン所属の茜です。 今回は、現在最も普及している対話型 AI サービスである ChatGPT で使用されているモデルと、LLM を使ったアプリケーション開発に特化したライブラリである LangChain を用いて社内向けのチャットボットを作成します。 ターゲット 任意のデータを元に回答を行うチャットボットを作成したい方 任意のデータを元に回答させる仕組みを知りたい方 ChatGPT とは ChatGPT とは、ユーザーが入力した質問に対して、まるで人間のように自然な対話形式でAIが答えるチャットサービスです。2022 年 11 月に公開されて以来、回答精度の高さが話題となり、利用者が急増しています。 人工知能の研究開発機関「OpenAI」により開発されました。 執筆時点では、GPT-3.5、GPT-4 という大規模言語モデル (LLM) が使用さ

                                                      LangChain で社内チャットボット作ってみた
                                                    • OpenAI APIとLangChainを用いた記事の翻訳・要約メディアのつくり方

                                                      はじめに この記事では、3日間でテック記事のAI要約・翻訳メディアをつくる個人開発で利用した OpenAI API LangChain の具体的な実装と利用コストについて触れていきます。 OpenAI APIとLangChainとは... OpenAI API OpenAI APIは、OpenAIという人工知能の研究・開発・普及を目的とした団体が提供するAPIです。このAPI は、自然言語とコードの理解または生成を必要とするタスクに利用することができます。 LangChain OpenAIが提供するGPT-3のような大規模言語モデル(Large Language Model: LLM)を利用してサービスの開発をしたいときに、「あるとうれしい機能」が集まったライブラリです。 この記事の目的 OpenAI API を使った記事の要約とFunction Callingの紹介 LangChain

                                                        OpenAI APIとLangChainを用いた記事の翻訳・要約メディアのつくり方
                                                      • 「生成AIエージェント」の実装入門(LangChain版とLangGraph版を対比) - Qiita

                                                        本記事は、2024年7月発売の書籍「つくりながら学ぶ!生成AIアプリ & エージェント開発入門」をベースに、私なりにGoogle Colabで動作する「生成AIエージェント」を実装してみた内容の解説です 上記の書籍「つくりながら学ぶ! 生成AIアプリ & エージェント開発入門」(発売日 2024/7/18) [link]、著者:ML_Bear(本名: 内田 直孝)さん を参考にしながら、自分なりにいろいろ変更を加えてみて実装してみました。 Google ColaboratoryのNotebookファイルは以下となります。 本記事では今回作成してみたプログラムについて解説します。 [1] 実装したプログラムの概要 今回の実装は、本書で紹介されているエージェント実装の1例目、第9章「インターネットで調べ物をしてくれるエージェントを作ろう」を参考にしました。 書籍の内容をそのまま写経して実装して

                                                          「生成AIエージェント」の実装入門(LangChain版とLangGraph版を対比) - Qiita
                                                        • プロンプトエンジニアリングから始めるLangChain入門

                                                          勉強会アーカイブ動画はこちら:https://youtube.com/live/8FPgoCjoenI === 昨年末に公開されて以来、「ChatGPT」は一般にも知られるキーワードとなり、非常に盛り上がっています。 ChatGPTが使っているGPT-3.5やGPT-4などのモデルは大規模…

                                                            プロンプトエンジニアリングから始めるLangChain入門
                                                          • Code Interpreter API

                                                            Editor's Note: This is another installation of our guest blog posts highlighting interesting and novel use cases. This blog is written by Shroominic who built an open source implementation of the ChatGPT Code Interpreter. Important Links: GitHub RepoIn the world of open-source software, there are always exciting developments. Today, I am thrilled to announce a new project that I have been working

                                                              Code Interpreter API
                                                            • LLMアプリ開発を体系的に学ぶには最適の入門書「ChatGPT/LangChainによるチャットシステム構築[実践]入門」 | DevelopersIO

                                                              こんにちは、つくぼし(tsukuboshi0755)です! ChatGPTから始まった第四次AIブームは、まだまだとどまる事を知らないですね。 さらにAzure OpenAI ServiceやAmazon Bedrock等の生成AIサービスが主要クラウド上で出揃った事で、エンタープライズ業界でも徐々にLarge Language Models(以下LLM)を用いたシステム開発の需要が高まってきています。 しかし普段はAWSインフラ関連の業務を専門とする私を含め、LLMアプリ開発初心者のエンジニアにとって、生成AIを活かして一からシステムを開発するのは、まだまだハードルが高いように感じられます。 特に以下のような点で、まだ理解が追いついていないと感じているエンジニアの方が多いのではないでしょうか? LLMを使うと何ができるのか? ChatGPTのAPIを触ってみたいが、どのように使えばいいの

                                                                LLMアプリ開発を体系的に学ぶには最適の入門書「ChatGPT/LangChainによるチャットシステム構築[実践]入門」 | DevelopersIO
                                                              • 「OpenAI」から「Azure OpenAI Service」への移行 「LangChain」を使って実装する中で気づいたこと

                                                                「ChatGPT Meetup」は、プロンプティングからOpenAI API、さらには周辺のライブラリやHubのエコシステムまで広く活用の助けになる知見を共有し、みんなで手を動かして楽しむためのコミュニティです。2回目に登壇したのは、株式会社リンクアンドモチベーションの岡田大輔氏。OpenAIからAzure OpenAI Serviceへの移行について発表しました。 登壇者の自己紹介 岡田大輔氏:機能開発を「ChatGPT」を使ってやってみたので、そこからわかったことを共有させていただければなと思います。 最初に自己紹介です。岡田大輔といいます。リンクアンドモチベーションで働いていて、今4年目です。アプリのエンジニアをしています。ふだんはRailsとVueでWebアプリを作っているのですが、今回は、機能開発のところで(ChatGPTを)いろいろ触ってみました。 ChatGPTを使った機能開

                                                                  「OpenAI」から「Azure OpenAI Service」への移行 「LangChain」を使って実装する中で気づいたこと
                                                                • ChatGPT APIの運用で必須のツール: LangChainの使い方まとめ (1) - Qiita

                                                                  こんにちは!逆瀬川( https://twitter.com/gyakuse )です! 今日はLangChainの使い方について書いていこうと思います。 ChatGPT API の欠点について LangChainについて書く前に、ChatGPT APIの使いづらい部分をまとめていきたいと思います。 これを考えておくと、なぜLangChainが必要であるかということがわかり、さらに今後どのような機能が搭載されうるか/されるべきかということがわかります。 ChatGPT APIを使う際の難しい部分は一般的に以下のようにまとめられます。 プロンプトの共通化や管理が面倒くさい 最近の事実をベースとした質問-応答が難しい 最大の入出力合計が4096トークン(約3000字)であるため、長い情報を持たせることがしづらい ExcelやCSV、PDF等を直接読み込ませることができない 出力の処理のチェーンの

                                                                    ChatGPT APIの運用で必須のツール: LangChainの使い方まとめ (1) - Qiita
                                                                  • 【ChatGPT】とベクトルデータベースによる企業内データの活用(いわゆるRAG構成) - Qiita

                                                                    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 本記事は日本オラクルが運営する下記Meetupで発表予定の内容になります。発表までに今後、内容は予告なく変更される可能性があることをあらかじめご了承ください。下記セッションでは、本記事の内容以外にデモンストレーションも実施する予定です。 ※セミナー実施済の動画に関しては以下をご参照ください。 はじめに 2022年暮れ、ChatGPTの登場以降、あらゆる企業がDXの在り方を問われはじめ、大規模言語モデルの仕組みをどのように業務に取り入れるかを検討されていると思います。 その検討の一つとして、「GPT(LLM)が学習していない企業内のデータ

                                                                      【ChatGPT】とベクトルデータベースによる企業内データの活用(いわゆるRAG構成) - Qiita
                                                                    • LangChainで生成AIアプリ開発に入門できる名著が出ました! - Qiita

                                                                      2023年10月からの景品表示法の改正に伴う注記:この記事は技術評論社様より献本をいただき、発売前の書籍レビューをするものです。 昨年末からの生成AIブーム、すごいですよね。 勢いを落とすことなく毎日のように新しい技術や製品のアップデートが登場しており、業務やプライベートで生成AIを活用したアプリケーション開発に取り組まれている方も多いのではないでしょうか。 そんな2023年10月、大規模言語モデル(LLM)を利用したアプリケーション開発に入門できる名著が発売されますので紹介します。 紹介したい本 ChatGPT/LangChainによるチャットシステム構築[実践]入門 著:吉田 真吾、大嶋 勇樹 あさって10/18(水) 発売です! 今回ありがたいことに発売前に献本を頂けることになったので、先行レビューをさせていただきます。 この本を読むべき人は誰? OpenAIなどの大規模言語モデル(

                                                                        LangChainで生成AIアプリ開発に入門できる名著が出ました! - Qiita
                                                                      • 手軽に作れるChatGPTクローンと本家ChatGPTを対決させてみた

                                                                        手軽に作れるChatGPTクローンと本家ChatGPTを対決させてみた 2022.12.27 Updated by Ryo Shimizu on December 27, 2022, 18:50 pm JST LangChainというフレームワークを使うと、サンプルコードになんとChatGPTクローンというものがある。 LangChainは、まさにChatGPTのような、既存の大規模言語モデル(LLM;Large Language Model)を前提として、それを使いやすくするためのツールキットだ。 LLMとしては、ChatGPTでも使われているOpenAIのGPT-3(またはGPT-3.5相当)を使うこともできるし、GoogleのFLAN-T5 XLみたいなモデルも使える。詳しくはnpakaこと布留川英一のnoteを参照のこと。 ただ、このモデル、ChatGPTとちがってタダでは使えない

                                                                          手軽に作れるChatGPTクローンと本家ChatGPTを対決させてみた
                                                                        • 外部データをRetrievalしてLLM活用する上での課題と対策案 - ABEJA Tech Blog

                                                                          はじめに ABEJAでデータサイエンティストをしている服部です。 今回はLLMで外部データを使うケースについてのお話をしたいと思います。 はじめに LLMと外部データの利用 RetrievalとLLM 0. (事前準備)参照したいテキストデータをDBに格納 1. ユーザの入力文とのテキスト類似度を計算して、関連テキストを抽出する(Retrieval) 2. 関連テキストをLLMのプロンプトに入れ込み、ユーザの入力文に回答する。 Retrieval時の課題 LangChainでの用意 Case1: それぞれの文章がRetrievalしにくい形で保存されている 対策案: ページ構造を意識した形で各文章を格納する 他の対策案 聞き方を明確にする 類似度を測るクエリ文章を置き換える 不要そうな文章をデータから削除する データ自体をLLMで整形し直す Case2: 未知の単語を含む 仮説: ニャオハ

                                                                            外部データをRetrievalしてLLM活用する上での課題と対策案 - ABEJA Tech Blog
                                                                          • 大規模言語モデルと外部リソースとを融合させたアプリケーションを作ろう-langchainのご紹介- - Qiita

                                                                            はじめに 近年、深層学習を用いた自然言語処理技術の進展が目覚ましいです。 その中でも、GPT-3をはじめとする大規模言語モデル(LLM)には大きな可能性を感じています。 最近ですと、AI技術者以外にも大きなインパクトを与えたChatGPTが記憶に新しいでしょう。 今後もLLMの進化は止まらないと予想されており、私たちもどうやって活用するかを具体的に検討すべきフェーズに入ったのではないでしょうか。 しかし、LLMを実業務に適用するとなると、越えなければならない課題がいくつも出てきます。 今回は、以下にあげた第2・第3のハードルを越えるために役立つlangchainというライブラリをご紹介します。 第1のハードル:機密データの扱い LLMはOpenAPIのGPT-3等、モデル自体は公開されておらずWebAPIだけが提供されているというパターンが多いです。 そのため、機密データを社外に送信すると

                                                                              大規模言語モデルと外部リソースとを融合させたアプリケーションを作ろう-langchainのご紹介- - Qiita
                                                                            • ざっくりつかむ!LangChainのメンタルモデル

                                                                              はじめに 昨今の激アツChatGPTブームを見ると、これをアプリとして開発してみたいと思う方も多いのではないでしょうか。気になって調べてみるとLangChainやLlamaIndexというライブラリに行き着く方も多いはずです。 そしてすぐ壁に直面すると思います。 結局これらのライブラリが 何で どういう時に どう使えば良いのか わからない! そうです。私です。 特にLangChainは初めてLLMアプリ開発される方には少し難解です。LangChainは非常に積極的な開発がされているライブラリで、課題や良い方法が発見されればそれをすぐ実装!というスピード感で動いています。 その分、ドキュメントこそ整備されているものの膨大な情報量に迷子になりやすい状況です。 そこで、今回はLangChainのメンタルモデルを簡単に説明してみることにしました。 全体感が抑えられていればコアな情報、追加で必要とな

                                                                                ざっくりつかむ!LangChainのメンタルモデル
                                                                              • GraphRAGを使った生成AIチャットアプリを作ってみた - Qiita

                                                                                Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? RAGの精度向上に有効な施策としてGraphRAGという手法があります。 インプットされた文章をノードとエッジと呼ばれる要素に分解し、ノード間の関係性をグラフデータとして表現する手法になります。 例えば文章中に出てくる人物をノードとし、人物間の関係性をエッジで表現する、といったイメージです。 ベクトル検索を使ったRAGの場合「ドキュメント内の離れた箇所に登場するけれども、関係性の強い情報」といったものを扱う際に課題がありました。 GraphRAGの活用により、そういった情報を関連のある情報として拾えるようになり、生成AIによる文脈理解の

                                                                                  GraphRAGを使った生成AIチャットアプリを作ってみた - Qiita
                                                                                • そろそろ知っておかないとヤバい? 話題のLangChainを30分だけ触って理解しよう! - Qiita

                                                                                  LangChainって何? ChatGPTを始めとする大規模言語モデル(LLM)の流行が止まりませんが、そんなLLMを活用して日々開発するエンジニアの間で最近ずっと耳にするキーワードの一つがLangChainです。 LangChainとは、LLMを用いたアプリケーション開発を効率的に行うためのライブラリです。機械学習分野で最も人気のあるPython言語用に提供されています。 そもそもライブラリって何? プログラミングの文脈でよく聞く「ライブラリ」って何者なのか、初学者にはいまいちピンと来づらいですよね。 分かりやすく言うと 「特定の言語でプログラミングをする際によく使いそうな機能をあらかじめ誰かが作ってくれて、呼び出すだけでその機能を使えるようにしてくれている便利セット」 のようなものです。 例えば、よく使われるPython言語のライブラリの例として math があります。これは数学的な計

                                                                                    そろそろ知っておかないとヤバい? 話題のLangChainを30分だけ触って理解しよう! - Qiita

                                                                                  新着記事