NHK é¦é½åãã ãã£ã¨ãã¥ã¼ã¹ é«é¡çé¤è²»å¶åº¦ å¼ãä¸ãã§èªå·±è² æ ã©ããªãï¼å¹´åå¥ã«è©³ãã2025å¹´8æãã 2026-2027å¹´ã段éçã«å¼ãä¸ã ãã£ã¨ãã¥ã¼ã¹

迷走主婦ï½ããæ¼ãå± @meisoushufu ããã«é£²ãã§ãã£ã¦ç·æ§ã«ãã£ããã«è¨ã£ã¡ãã ãã ããã¨ç£å©¦äººç§ã§åéã®å¨ãè¨ãããã çççãã²ã©ãã¦ãã«ãå¦æ¹ãããé«3女åã å çã®è¨èã«ããï¼ãã¨åºã¾ã£ã¦ããã説æãå§ããã ããã«é£²ãã§ããªãã¦è¨ã£ããç·ãªãã¦ããããå¦å¨ ããªããã ã¨æã£ã¦ã´ã ãã¤ããã«æ§è¡çºããããããã¨ã 2024-12-30 08:09:11 迷走主婦ï½ããæ¼ãå± @meisoushufu ãå çã ããé»ã£ã¦èãã¦ãããã©ãããã¤ã¤ã ã£ããã¨å®¶ã«å¸°ã£ã¦æ¥ã¦æ¯è¦ªï¼ããåï¼ã«è©±ãã ã¾ã ç·ã®åã¨ãä»ãåã£ããã¨ãªãå¨ãªã®ã«ãé²éª¨ã«è¨ãã£ã¦ã©ããªã®ï¼ ã¨ããåã ãã大åãªãã¨ãããããªãããç·æ§å»å¸«ããè¨ããããããã¡ãªã®ãããããªãã 女æ§å»å¸«ã ã£ããã¾ãå°è±¡éã£ãããããªãããªï¼ ãããããã«é£²ãã§ãï¼å¦å¨ ããªãï¼ä¸OK ãã®çè«ãå ¨ç·æ§ãæ¬å½ã«æãã®ãï¼ ã¤ã¤
â1人ã®å»å¸«ãè¤æ°ã®å»çäºæ ãç¹°ãè¿ãâã¼ããªãã¼ã¿ã¼å»å¸«ãã®åé¡ãå»å¹´ããä»å¹´ã«ããã¦ãåå°ã§ç¸æ¬¡ãã§çºè¦ãã¦ãã¾ããããç é¢ã§ã¯1人ã®è³ç¥çµå¤ç§å»ãé¢ãã£ãæè¡ã§8ãæéã«8件ã®å»çäºæ ãèµ·ãã¦ãã¾ãããããã®äºå®ã¯å ¬ã«ãããªãã¾ã¾å»å¸«ã¯å¥ã®ç é¢ã«ç§»ã£ã¦ãã¾ãããä»ã®å¶åº¦ã®ã¾ã¾ã§ã¯ãæ£è ã¯ããªãã¼ã¿ã¼å»å¸«ããé¿ãããã¨ããå»çäºæ ãé²ããã¨ãã§ããªãã®ã§ã¯ãªãããç¶è¦ªã失ã£ãéºæã®å£°ã«æ¼ãããå®æ ãåæãã¾ããã ï¼ããã¸ã§ã¯ãã»ã³ã¿ã¼ ãã£ã¬ã¯ã¿ã¼ é«æ©è£å¤ªï¼
Xå»å¸«ã®æç¡ãè¨ããã¬éãè¦ç·ãä¸ç´å»ã«ç ä¿®å»ãå£çãã§ããã¯ãããªããå·åãå§ããããã ããããå®éã«ã¯éº»é ãå¹ãã¦ããªãã±ã¼ã¹ããã£ããããæãã¡ã¹ãå ¥ããããç´å¾ãè ¹ãåãè£ãããç£å©¦ã¯æè¡å°ã§æ²é³´ãä¸ããââã 麻é ãå¹ãã¦ããªãç£å©¦ã®è ¹ã«ã¡ã¹ã⦠ã°ã¬ã¼ãAã®è¶ ç·æ¥å¸çåéã¯ãåå®®ç ´è£ãªã©ãç£å©¦ãèå ã®å½ã«é¢ããäºæ ã«é¥ã£ãæã«è¡ããããæè¡ã®æ¹é決å®å¾ãä»ã®è¦ä»¶ãä¸åèæ ®ãããã¨ãªãç´ã¡ã«æè¡ãéå§ãã30å以å ã«å ã®å¨©åºãã¯ããã¨å®ç¾©ããã¦ãããåææ¸ãåã£ããè¡åæ¤æ»ããããããä½è£ã¯ãªãã ãã®A大å¦éå±ç é¢ã§ã¯ã2018å¹´ãã2021å¹´é ã«ããã¦ã麻é ãå¹ãã¦ããªãç£å©¦ã®è ¹ã«ã¡ã¹ãå ¥ãã¦å¸çåéï¼ã«ã¤ã¶ã¼æè¡ï¼ããã¨ããå»çé誤ãããããã®å ´ã«ããã¹ã¿ããã®éã§ãåè ¹ã«ã¤ã¶ã¼ãã¨å¼ã°ããããã«ãªã£ããèæ¯ã«ã¯ãA大å¦éº»é ç§ã«å¨ç±ãã¦ããXå»å¸«ã«ãããã¯ãã©åé¡ãã常è»
ãã¾ãã®é«ãã«çµ¶å¥ããæããªãã¨æã£ã ä»å¹´åº¦ã®å½ä¿æï¼å½æ°å¥åº·ä¿éºã®ä¿éºæï¼ã®æ±ºå®éç¥æ¸ãå±ããé ã§ã¯ãªãã ããããéé¡ã®é«ãã«ã³ã£ãããã¦ãã人ããããããããªããç§ã3å¹´åã¯ããã ã£ãããã¡ããä»ãé«ãã¨æãã¦ãããã3å¹´åã®2021å¹´ã«èªæ²»ä½ããéç¥æ¸ãåãåã£ãæã¯ããã¾ãã®é«ãã«çµ¶å¥ããæããªãã¨æã£ãã®ã ã å½æã®å½ä¿æã¯ãå¹´éã§88ä¸åãå½ä¿æã¯6æããç¿å¹´3æã¾ã§ã®10åæããåºæ¬ã®ãããæã 8ä¸8000åã§ãããç¥äººã«è©±ãã¨ãå½ä¿æã¯åå¹´ã®æå¾ã«åºã¥ãã¦æ±ºå®ããããã¨ããã稼ãã§ãããã§ããããã¨ææããããç§ã¯å稿ãæ¸ãä»äºããã¦ãããããã®åå¹´ã2020å¹´ã®å¹´åã¯890ä¸åãããã©ãããã¯äº¤éè²»ãè³æ代ãªã©åæçµè²»ãå«ããé¡ã§ãããçµè²»ãå¼ããæå¾ã¯640ä¸åã§ããã
ç¶ã¯ä»è·æ½è¨å ¥æãã¦ãã¾ããã å ¥æããã¾ã§ã¯å¤«å©¦ãµããã§çæ´»ï¼å¨ã®ãã«ãï¼ãé±3åã®éæéé¢ããã¦ãã¾ãããããã10æåæ¬ã«å¦»ï¼ç§ã®æ¯ï¼ãç·æ¥å ¥é¢ãï¼åº¦ã®æè¡ãåãããã¨ã«ããã®ä¸ãæ¯ã®éé¢ã®ç®å¦ã©ããããä»å¾ã©ãã¾ã§å復ããããããããªãç¶æ³ã¨ãªãã¾ãããå½åã¯ç§ï¼å¨ï¼ã®ãã«ãã§ä¸äººæ®ãããç¶ãã¦ããç¶ã§ããããã®ã¾ã¾ç¶ããã®ã¯å°é£ã¨å¤æãéæã¯ãªããã¯ãé£æ¥ãã¦ããä»è·æ½è¨ã«å ¥æãã¦ï¼ã¶æã¨æ°æ¥ã§ããã ä»è·æ½è¨ã§ã¯ã©ã¹ã¿ã¼ãçºçãç¶ã¯PCRé½æ§ã« ä»è·æ½è¨ã§æ°äººã®ã³ããææè ãåºãã¨è¨ããã¨ã§ãæ¿åæ¥è§¦è ã ã£ãç¶ãPCRæ¤æ»ãããé½æ§ã¨ãªãã¾ããã éæã¯ãªããã¯ããã¯ä»¥ä¸ã®å 容ã®é»è©±ãããã¾ããã ï¼ï¼éæã¯ãªããã¯ã§ã¯ãPCRé½æ§æ£è ã®éæãã§ããªã ï¼ï¼ç¡çç¶ã§å®å®ãã¦ãããã90æã¨é«é½¢ã§åºç¤ç¾æ£ï¼æ ¢æ§èºæ°è «ï¼ãããã®ã§éæã¨å ¨èº«ç®¡çç®çã§æ±æ·å·å»èª ä¼ç é¢ã«æ¬éãã ï¼ï¼
ç±³Appleããç±³å½ã§ã®ãApple Watch Series 9ãã¨ãApple Watch Ultra 2ãã®è²©å£²ãåæ¢ããã¨ãç±³9TO5Macã12æ18æ¥ï¼ç¾å°æéï¼ãAppleããã®å£°ææãæ·»ãã¦å ±ããã21æ¥ããããã販売ãåæ¢ãã24æ¥ããå®åºèã§ã®è²©å£²ãåæ¢ããã ç±³å½é貿æå§å¡ä¼ï¼ITCï¼ã10æã«ãApple Watchã§è¡ä¸é ¸ç´ æ¿åº¦ã測ãåèè¡é ¸ç´ 飽å度ï¼SpO2ï¼æ¸¬å®æ©è½ããç±³å»çæè¡ã¡ã¼ã«ã¼Masimoã®ç¹è¨±ã侵害ããã¨å¤æãã¦ãããè¿ãè¼¸å ¥ç¦æ¢ãå½ããè¦éãã ãITCã«ããè¼¸å ¥ç¦æ¢æªç½®ã¯ç¾å¨ã大統é 審æ»æéä¸ã§ããã®æéã¯25æ¥ã«çµäºããã SpO2ã»ã³ãµã¼ãæè¼ãã¦ããªããApple Watch SEãããã³æ§ã¢ãã«ã¯å½±é¿ãåããªããã¾ããæ¥æ¬ãå«ãç±³å½ä»¥å¤ã§ã®è²©å£²ã«ã¯å½±é¿ããªãã Appleã¯ç±³ã¡ãã£ã¢ã«å¯¾ããã顧客ãApple Watchã確å®ã«å©ç¨ã§ãã
é¼»ã¥ã¾ããæ¹åããæåã¨ãã¦å¤ãã®å¸è²©è¬ã«ä½¿ããã¦ãããã§ãã¬ããªã³ã¯ã飲ã¿è¬ã§ã¯å¹æããªãã¨å ±åããã¦ãããï¼PHOTOGRAPH BY NEWSCAST/UNIVERSAL IMAGES GROUP/GETTY IMAGESï¼ é¼»ã¥ã¾ããæ¹åããæåã¨ãã¦ä¸è¬çãªå¸è²©è¬ã«ä½¿ããã¦ããããã§ãã¬ããªã³ãã¯ã飲ã¿è¬ï¼çµå£è¬ï¼ã§ã¯å¹æããªãã¨ããçµè«ããç±³é£åå»è¬åå±ï¼FDAï¼ã®è«®åå§å¡ä¼ã«ãã£ã¦ä¸ããããããã¨ã¤ã³ãã«ã¨ã³ã¶ã®ã·ã¼ãºã³ãè¿ã¥ããæ°åã³ããã¦ã¤ã«ã¹ææçã®æµè¡ãç¶ãä¸ãç±³å½ã®æ¶è²»è ã®éã«åæºãåºãã£ã¦ããã ãã§ãã¬ããªã³ã¯ãå¦æ¹ç®ãªãã§è²·ããå¤ãã®å¸è²©è¬ã«ä½¿ããã¦ãããé¼»ã¥ã¾ããç·©åããæåãå«ã¾ãã¦ããã¨ãããç±³å½ã®è£½åã®å¤§åã«ã¯ãã§ãã¬ããªã³ãå ¥ã£ã¦ããã¨ãç±³ãããµã¹å¤§å¦ãã¥ã¼ã¹ãã³å»çç§å¦ã»ã³ã¿ã¼ã®è³é¼»å½åç§å»ã§å©ææã®ã¸ã§ã¤ã½ã³ã»ã¿ã«ããã¸æ°ã¯è¨ãï¼ç·¨æ³¨ï¼æ¥æ¬ã§ãã
åçã¯ã¤ã¡ã¼ã¸ã§ãï¼gettyimagesï¼ ãã®è¨äºã®åçããã¹ã¦è¦ã ä¾å¹´ãªã11ï½12æããããææãåºããã¤ã³ãã«ã¨ã³ã¶ãããããä»å¹´ã¯ã¾ã æ®æã®å³ãã9æãããå¦æ ¡ãä¸å¿ã«ææè ãæ¥æ¿ã«å¢ãã¦ãããããããå°ä¸å¦çãããå ç«ãé«ãã¨è¦ãããé«æ ¡çã®éã§ãæµè¡ãæç¥çã§ã¯é«æ ¡ã®ä¼æ ¡ãç¸æ¬¡ããããã¯æåç¥ãä½è²ç¥ã®ç´å¾ã«èµ·ãã¦ãããå°é家ã«ããã¨ãã³ããç¦ã®éã«ã¤ã³ãã«ã®æµè¡ããªãã£ããã¨ã§ãå ç«ãä½ä¸ãã¦ãããã¨ãåå ã¨è¦ãããã¨ããã ããªã¹ã¯æ¯è¼ãæ°åã³ããã¨å£ç¯æ§ã¤ã³ãã«ã¨ã³ã¶ã®éãã¯ãã¡ã ï¼ãããï¼ãããï¼ æç¥çã®ã¨ããçç«é«æ ¡ã§ç°å¤ãèµ·ããã®ã¯ã9æ14æ¥æã ã£ããçºç±ãªã©ã®ä½èª¿ä¸è¯ã«ããçå¾ã®æ¬ å¸ã®é£çµ¡ãã次ã ã¨å ¥ã£ã¦ããã®ã ã ããããªã«å¤§å¢ã®çå¾ããæ¬ å¸é£çµ¡ãå ¥ããã¨ã¯ããã¾ããã§ãããã¨æ ¡é·ã¯æ¯ãè¿ããæçµçã«ã941人ã®çå¾ã®ãã¡301人ãã¤ã³ãã«ã«ææãã¦
éãé³´ããã°æããã¾ãã 2023å¹´9æ19æ¥ã«HIROTSUãã¤ãªãµã¤ã¨ã³ã¹ãåºãããä¸é¨ã¡ãã£ã¢ã®å ±éã«ã¤ãã¦ãã¨ãããã¬ã¹ãªãªã¼ã¹ãèªãã§ãæåã«æããã®ã¯ããã§ããã HIROTSUãã¤ãªãµã¤ã¨ã³ã¹ã¯ãç·è«ãããã®åãã«å¼ãå¯ãããããã¨ããæ§è³ªã使ã£ã¦ãããã®æ©æçºè¦å¹æã謳ã "N-NOSE" ã¨ãããµã¼ãã¹ãæä¾ãã¦ãã¾ãã å°¿ãä¸æ»´åããã¨ãããã®äººã®ãã®ã§ããã°ç·è«ã¯å¯ã£ã¦ããã å¥åº·ãªäººã®ãã®ã§ããã°ãéã«ç·è«ã¯éãã¦ããã èªåã®å°¿ãç·è«ã«å¤å®ãã¦ãããã°ãããã®ãªã¹ã¯ããããã¨ãããã¨ã§ããã ããããNewsPicks ããããæ£è 10人ã®å°¿ãå ¨ã¦é°æ§ï¼ããã§ã¯ãªãï¼ã¨å¤å®ããããçã®ãã¼ã¿ãå ã«ãN-NOSE ã¯å½¹ã«ç«ããªãã®ã§ã¯ãªããã¨ãããã¨ãå ±éããã®ã§ãã ããã«å¯¾ãã¦HIROTSUãã¤ãªãµã¤ã¨ã³ã¹å´ã9æ19æ¥ã«åè«ããã®ã§ããããããæ£ç´çµ¶å¥ãããã
æ°åã³ããã¦ã¤ã«ã¹ã¯ã¯ãã³ã®æ¥ç¨®ã«ã¤ãã¦ãåçå´åçã¯2024å¹´3æãæéã¨ãªã£ã¦ããäºé²æ¥ç¨®æ³ä¸ã®ãè¨ææ¥ç¨®ã®ç¹ä¾ãã¨ããä½ç½®ã¥ããã4æ以éã¯å»¶é·ããªãæ¹éãåºãããç¹ä¾ã«ããå ¨é¡å½è²»ã§ã®æ¥ç¨®ãçµããè¦éãã§ãåå´çã®å°éé¨ä¼ã§è°è«ãã¦æçµæ±ºå®ããã 65æ³ä»¥ä¸ã®é«é½¢è ãªã©éçåãªã¹ã¯ãé«ã人ã®å ´åãå£ç¯æ§ã¤ã³ãã«ã¨ã³ã¶ã¯ã¯ãã³ã¨åãã§ãè²»ç¨ã®ä¸é¨ãå½ã®äº¤ä»éã§ã¾ããªããå®ææ¥ç¨®ãã«ä½ç½®ã¥ããç§å¬ã«1åå®æ½ããæ¹åã§èª¿æ´ãã¦ãããå®ææ¥ç¨®ã§ã¯ãè²»ç¨ã®èªå·±è² æ åãè£â¦
8æ³¢ãåãéå»æ大ã®æµè¡ãè¿ãã¦ããæ¥æ¬ã§ãããä¸çã§ã¯æ°ããªç³»çµ±ã®ã¦ã¤ã«ã¹ãBA.2.86ãã®ç»å ´ã注è¦ãã¦ãã¾ããåã³æ¯ãåºãã«æ»ã£ã¦ãã¾ãã®ã§ããããï¼è¥¿æµ¦åããã«ææ°æ å ±ãèãã¾ããã
ãã®ã³ã¼ãã¼ã§ã¯ã2014å¹´ããå 端ãã¯ããã¸ã¼ã®ç 究ãè«æåä½ã§è¨äºã«ãã¦ããWebã¡ãã£ã¢ãSeamlessãï¼ã·ã¼ã ã¬ã¹ï¼ã主宰ããå±±ä¸è£æ¯ æ°ãå·çãæ°è¦æ§ã®é«ãç§å¦è«æãå±±ä¸æ°ãããã¯ã¢ãããã解説ããã Twitter: ï¼ shiropen2 Google DeepMindãGoogle Researchã«æå±ããç 究è ããçºè¡¨ããè«æãEnhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to cliniciansãã¯ãâå»çç»åãAIã¨äººã®ã©ã¡ãã診æããæ¹ãè¯ãããå¤æããAIãã¼ã«âãææ¡ããç ç©¶å ±åã§ããã ãCoDoCãï¼Complementarity-driven Deferral-to-Clinical Workflowï¼
ä¸çã§æã身ä½ææãè¡ããã¦ããæ¥æ¬ã®ç²¾ç¥ç§ç é¢ãåçå´åçã§ã¯ç¾å¨ãææè¦ä»¶ã®è¦ç´ããä¸éæãªã¾ã¾é²ãããç²¾ç¥ç§ç é¢ãæãããã³ã»æ¥æ¬ç²¾ç¥ç§ç é¢åä¼ï¼æ¥ç²¾åï¼ã®å±±å´å¦ä¼é·ï¼82ï¼ã¯ã©ãã¨ããã¦ããã®ããããã¡ãç¹å ±é¨ãã®åç¬ã¤ã³ã¿ãã¥ã¼ã«å¿ããå±±å´æ°ã®è¨èãè©³å ±ãããï¼æ¨åè²åï¼
å°åå対çã®è²¡æºãããããèªæ°å ã®èæ¨å¹¹äºé·ããæ¢åã®ä¿éºæåå ¥ã®æ´»ç¨ãªã©ã§ã§ããããã確ä¿ãããã¨ããèãã示ãã¦ãããã¨ã«ã¤ãã¦ãå è¤åçå´å大è£ã¯ãå¹´éãå»çã«ä½¿ãéãåã©ãã«æã£ã¦ããä½å°ã¯ãªããã¨è¿°ã¹ãå¦å®çãªèãã示ãã¾ããã èªæ°å ã®èæ¨å¹¹äºé·ã¯å ã«ãå°åå対çã®è²¡æºã«ã¤ãã¦ãç¾ç¶ã§ã¯ãå¢ç¨ãå½åµã®çºè¡ã§æ»åºãããã¨ã¯æ³å®ãã¦ããªããã¾ãã¯æ³åºåæ¸ã®å¾¹åºããæ¢åã®ä¿éºæåå ¥ã®æ´»ç¨ã§ãã§ããããã確ä¿ããããã¨è¿°ã¹ãå½æ°ã®è² æ ãå¢ããªãæ°ããªæ¹çãæ¤è¨ããæåã示ãã¾ããã ããã«ã¤ãã¦å è¤åçå´å大è£ã¯ããã¸ãã¬ãã®çªçµãæ¥æå ±é THE PRIMEãã§ãä»ããã ãã¦ãã社ä¼ä¿éºæã¯ãå»çã¯å»çã«ä½¿ããå¹´éã¯å¹´éã«ä½¿ãã¨ãããããããç®çã¨è² æ ã®é¢ä¿ã§ã¤ãã£ã¦ãããå¹´éãå»çã«ä½¿ãéãåã©ãã«æã£ã¦ããã®ã¯ãæ£ç´è¨ã£ã¦ä½å°ã¯ãªããã¨è¿°ã¹ã¾ããã ãã®ããã§è²¡æºã®ããæ¹ã«ã¤ãã¦
å½é¢ã§ã¯è¨ªå診çã®åéãã¾ãå¤éã«å¤æ¥è¨ºçããããªã£ã¦ããã¾ããï¼é¢é·å¨é¢æï¼ ã¾ããéææ¥ã¯çµæ¥å¤æ¥è¨ºçããã¦ããã¾ãã®ã§ãäºç´ä¸è¦ã§ãè¶ãé ãã¾ãã å½é¢ã§ã¯é«æ¿åº¦ãã¿ãã³Cç¹æ»´ã1å500åï¼ç¨è¾¼ã»èªè²»è¨ºçï¼ã§æä¾ãããã¨ã決ãã¾ããã 以ä¸ã®å ¨ã¦ã®é ç®ãæºãããæ£è ããã対象ã§ãã ã»ããã®è¨ºæãåããæ¹ ã»ï¼ã¶æ以å ã®ç´è¿ã®æ¡è¡çµæããæã¡é ããæ¹ ã»ä»¥ä¸ã®èª¬æãèªãã§é ããæ¹ ãã®æ±ºå®ãããèæ¯ãããã¾ãã å½é¢ã«ã¯ããæ²»çã®å°éå»ï¼æ¾å°ç·æ²»çå°éå»ï¼ã®ä¸æ¾æ£åå»å¸«ãå¨ç±ãã¦ããã¾ãã è¿é£ã®ã¯ãªããã¯ã§ã¯èª¤ã£ã説æã§é«æ¿åº¦ãã¿ãã³Cç¹æ»´ãé«é¡ãªèªè²»è¨ºçã§æä¾ãã¦ãããã㧠ããããã¯ãªããã¯ã¯é常ã®è¨ºçã§ãæ£è ããã®ä½èª¿ã®ç®¡çãææ°ã§ãããã¨ãè¦ãã¦ãã¾ããã æ£è ããã¨ãã¦ã¯ãå¹ããã¨è¨ããã¦é«ããéãåºãã¦ããã®ã«ãæ®éã®è¨ºçããã¾ã¨ãã«åãããã¦ããªãç¶æ³ã§ãã é«æ¿åº¦
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}