ä»äºã§æç³»åãã¼ã¿ããä½ãçããåºãããããããçãªè©±é¡ããã£ã¦ã欲ãã¶ã£ããã¦æ·±å±¤å¦ç¿ã使ã£ã¦ããããããã¦TensorFlowã«ã¦LSTM*1ã使ããã¨ä¼ãã§ã訳ã§ãã ã¿ã¤ãã«ã¯ç¹ã«æå³ã¯ãªãããããLSTM ï½ æè¿ã®ååã¨å ±ã« - Qiitaã«å¯¾ããåæãªã¢ã³ãµã¼ã½ã³ã°ã§ãã ãããã§éããããæ å ±ãéããã¨ããã ãã®èªåç¨ã¡ã¢ã§ãããããããªãã«ã¨ã£ã¦æç¨ãªæ å ±ã¯æ¸ãã¦ãã¾ãããã¾ããéæã¡ã¢ã追è¨ããäºå®ã§ãã LSTMã¨ã¯ï¼ãã«é¢ããè¨äº â ãããLSTM ï½ æè¿ã®ååã¨å ±ã« - Qiita ã»LSTMã®æ´å²ççµç·¯ããè¨åããæ¥æ¬èªã§æ¸ãããè¨äºã®ä¸ã§ããããæã詳細ã«ä»çµã¿ã解説ãæ°å¼ã§æ¸ãä¸ãããã¦ããã ã»LSTMã«ã¯ï¼ã¤ã®ãã¼ã¸ã§ã³ãåå¨ãã¦ãããããã¦chainerãã©ã®ãã¼ã¸ã§ã³ãªã®ãã«ã¤ãã¦è¨åã ã»èª¤å·®éä¼ææã®å³è§£ãããã®ã¯ãçããã ã»ãã³ã½ã«ã®æ¸ã
æ±äº¬å¤§å¦å¤§å¦é¢å·¥å¦ç 究ç§ã®æ¾å°¾ç 究室ã¯3æ19æ¥ããã¼ã¿è§£æããã¢ãã«ã®ã¢ã¦ããããã¾ã§å¦ã¹ãè¬åº§ãGCIãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãè²æè¬åº§ãï¼æ£å¼åï¼ã°ãã¼ãã«æ¶è²»ã¤ã³ããªã¸ã§ã³ã¹å¯éå£åº§ï¼ã§å©ç¨ãã¦ããæ¼ç¿ã³ã³ãã³ããWebã§ç¡åå ¬éãããå人ã§å¦ç¿ããç®çã«éãã誰ã§ãç¡æã§å©ç¨ã§ããããç¡åå ¬éã«ãã£ã¦ãå®ç¤¾ä¼ã§ä¾¡å¤ãçããã¨ãã§ãããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã®è²ææ¡å¤§ãç®æããã¨ãã¦ããã Jupyter Notebookå½¢å¼ã§ä½æãããå ¨15ç« ã®æ¼ç¿ã³ã³ãã³ãããã¼ã¿ã®ã»ããã¢ãããã解æãå¯è¦åãã¢ãã«ã®ã¢ã¦ããããã¾ã§ãä¸æ°é貫ã§å¦ã¹ãã¨ããããã¼ã¿ãµã¤ã¨ã³ã¹ã®ä¸»è¦è¨èªPythonã®åºç¤ããå¦ã¹ãã»ããçµ±è¨çæ°å¤è¨ç®ãæ©æ¢°å¦ç¿ã«é¢ããæè¡ãSQLãMongoDBãåæ£å¦çãã¬ã¼ã ã¯ã¼ã¯ã®Sparkãªã©ãããã°ãã¼ã¿è§£æã«é¢ããæè¡ãå¦ç¿ã§ããã å人ã§å¦ç¿ããç®çã®ã¿ã§ç¡åã§å©ç¨ã§
æ±äº¬å¤§å¦æ¾å°¾ç 究室ï¼æ¾å°¾è±ç¹ä»»åææï¼ã¯1æ24æ¥ãæ±äº¬å¤§å¦ã®å ¬éè¬åº§ãDeep Learningåºç¤è¬åº§ãã§å®éã«ä½¿ã£ã¦ããæ¼ç¿ã³ã³ãã³ãã®ç¡åå ¬éãå§ãããGPUã使ã£ã¦ã¢ãã«ãå¦ç¿ããå®è·µçãªå 容ã§ãå人ã»éåç¨ã«éã£ã¦ç¡æã§å©ç¨ã§ããã Jupyter Notebookå½¢å¼ã§ä½æãããç 究è åãæ¼ç¿ã³ã³ãã³ãã§ãJupyterç°å¢ãããã°å©ç¨å¯è½ãGPUãå©ç¨ããå®éã«ã¢ãã«ãå¦ç¿ãããªããæè¡ãç¿å¾ã§ãããç·å½¢ä»£æ°ãæ©æ¢°å¦ç¿ãåæç¥èã¨ãã¦å¿ è¦ãã³ã¼ãã¯TensorFlowã¨ãNumpyãScipyãScikit-learnãªã©æ¨æºçãªã©ã¤ãã©ãªã§æ§æãããå ¬éããã®ã¯æ¼ç¿ãã¼ãã®ã¿ã§ãè¬ç¾©ãã¼ãã®ã³ã³ãã³ãã¯å¥ã å人ã§å¦ç¿ããç®çã®ã¿ã§ç¡åã§å©ç¨ã§ããè¬ç¿ä¼ãæ室ãªã©ã§ã®å©ç¨ã¯ä¸å¯ãã¯ãªã¨ã¤ãã£ãã»ã³ã¢ã³ãºã®ãCC-BY-NC-NDãï¼è¡¨ç¤º -æ¹å¤ç¦æ¢- éå¶å©-ä¸è¬ï¼ãé©ç¨
èªç¶è¨èªå¦çã«ããã Deep Learning æ±å大å¦å¤§å¦é¢æ å ±ç§å¦ç ç©¶ç§ å²¡å´ ç´è¦³ï¼[email protected]ï¼ http://www.chokkan.org/ @chokkanorg 2017-03-22 Deep Learning èªç¶è¨èªå¦çã«ããã 1 èªç¶è¨èªå¦çã¨ã¯ ⢠è¨èãæãè³¢ãã³ã³ãã¥ã¼ã¿ãä½ã ⢠å¿ç¨: æ å ±æ¤ç´¢ï¼æ©æ¢°ç¿»è¨³ï¼è³ªåå¿çï¼èªåè¦ ç´ï¼å¯¾è©±çæï¼è©å¤åæï¼SNSåæï¼â¦ ⢠åºç¤: åè©ã¿ã°ä»ãï¼å½¢æ ç´ è§£æï¼ï¼ãã£ã³ã ã³ã°ï¼åºæ表ç¾æ½åºï¼æ§æ解æï¼å ±åç §è§£æï¼ æå³å½¹å²ä»ä¸ï¼â¦ ⢠å¤ãã®ã¿ã¹ã¯ã¯ãå ¥åð¥ð¥ããåºå� ð¦ð¦ãäºæ¸¬ã � ð¦ð¦ = argmax ð¦ð¦âðð ðð(ð¦ð¦|ð¥ð¥) â»ç¢ºçã§ã¯ãªãã¢ãã«ãããã¾ã 2017-03-22 Deep Learning èªç¶è¨èªå¦çã«ããã
Logistics Lectures: are on Tuesday/Thursday 4:30 PM - 5:50 PM Pacific Time in NVIDIA Auditorium. The lectures will also be livestreamed on Canvas via Panopto. Lecture videos for enrolled students: are posted on Canvas (requires login) shortly after each lecture ends. Unfortunately, it is not possible to make these videos viewable by non-enrolled students. Publicly available lecture videos and vers
ã¯ããã« è¨ç®æ§è½ã¯å¿ é CPUã¨GPU CPU GPU GPGPU ãã³ããã¼ã¯ æ§ã ãªç°å¢ã§ã®å®é¨ ãã¥ã¼ã©ã«ãããã®æ§é ãå¤ããå®é¨ GPUã®æ å ± ãã£ã¼ãã©ã¼ãã³ã°ã®GPU TensorFlowãèªèããGPUã®æ§è½ 2017å¹´GPUã®æ©è¦è¡¨ï¼ãã¹ã¯ãããåãï¼ ç´¹ä» ã¯ããã« è¨ç®æ§è½ã¯å¿ é ãããã¾ã¨ãã«ãã£ã¼ãã©ã¼ãã³ã°ãããããã¨æãã®ã§ããã°ãã³ã³ãã¥ã¼ã¿ã®æ§è½ãç¡è¦ãããã¨ã¯ã§ãã¾ããããã¨ãã¨ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯è¨ç®éã®åé¡ããã£ã¦ä»ã¾ã§å·ã飯ãé£ã£ã¦ããæè¡ã§ãã è¨ç®æ§è½ã®åä¸ããã¥ã¼ã©ã«ãããã大ããæ¯ãã¦ããã¨è¨ã£ã¦ãéè¨ã§ã¯ãªãã®ã§ãã ã©ã®ãã¬ã¼ã ã¯ã¼ã¯ã使ã£ã¦ãã大æµã¯Mnistã使ã£ãç»åèªèã®ã¿ã¹ã¯ããã¥ã¼ããªã¢ã«ã«ããã§ããããããã¯æ¬¡å ã®ãã¯ãã«ãå ¥åãã¼ã¿ã¨ãã¦åãåãã¾ãã ããã ãã§ãä¸ã è¨å¤§ãªè¨ç®éã«ãªããããªã®ãä½ã¨ãªãåããã§ãã
Hereâs the learning path to master deep learning in 2020! Introduction Deep Learning, a prominent topic in Artificial Intelligence domain, has been in the spotlight for quite some time now. It is especially known for its breakthroughs in fields like Computer Vision and Game playing (Alpha GO), surpassing human ability. Since the last survey, there has been a drastic increase in the trends. (click
çããããã«ã¡ã¯ ãå æ°ã§ãããç§ã¯å æ°ã§ãã ååã¯Chainerã®ç´¹ä»ããã¾ãããnonbiri-tereka.hatenablog.com æ¬æ¥ã¯ãã®Chainerã使ã£ã¦ãCIFAR-10ã®åé¡ãè¡ã£ã¦ã¿ããã¨æãã¾ãã ã¢ã¼ããã¯ãã£ã¨ãã¦å©ç¨ããã®ã¯Convolutional Neural Networkãå©ç¨ãã¾ãã What is CIFAR-10 CIFAR-10 and CIFAR-100 datasetsã«ãããã¼ã¿ã»ããã§ãã32x32pixelã®ã«ã©ã¼ç»åã10ã®ã¯ã©ã¹ã«åé¡ããåé¡ãå«ã¾ãã¦ãã¾ãã ç»åã®å¤§ããã¯Trainingç»åã50000æãTestç»åã10000æã§ãã ç 究ã¨ãã®ãã³ããã¼ã¯ã§ãä¸è©±ã«ãªã£ã¦ãã人ãå¤ãã¨æãã¾ããã»ã»ã» 以ä¸ã®å³ã¯æ¬å®¶ã«æ²è¼ããã¦ãããµã³ãã«ç»åã§ãã ãã¼ã¿ã»ããã®èªã¿è¾¼ã¿ CIFAR-10ã§ã¯Pythonã§ã®èª
English PRESS RELEASE ï¼æè¡ï¼ 2016å¹´2æ16æ¥ æ ªå¼ä¼ç¤¾å¯å£«éç 究æ æç³»åãã¼ã¿ãé«ç²¾åº¦ã«åæããæ°ããªDeep Learningæè¡ãéçº IoTãã¼ã¿ã«é©ç¨ããæ¢åæè¡ã«æ¯ã¹ç´25ï¼ ã®å¤§å¹ ãªç²¾åº¦åä¸ãå®ç¾ æ ªå¼ä¼ç¤¾å¯å£«éç 究æï¼æ³¨1ï¼(以ä¸ãå¯å£«éç 究æ)ã¯ãIoTã¢ããªã±ã¼ã·ã§ã³ã«æ´»ç¨ãæå¾ ããããæ¯åãæ¿ãã人ã«ããå¤å¥ãå°é£ãªæç³»åãã¼ã¿ã«å¯¾ãã¦é«ç²¾åº¦ãªè§£æãå¯è½ã¨ããDeep Learningæè¡ï¼æ³¨2ï¼ãéçºãã¾ããã Deep Learningæè¡ã¯ã人工ç¥è½ã®çºå±ã«ããããã¬ã¼ã¯ã¹ã«ã¼ã¨ãã¦æ³¨ç®ããã¦ãããç»åãé³å£°ã§ã¯æ¥µãã¦é«ãèªè精度ãéæãã¦ããä¸æ¹ã§ãé©ç¨ã§ãããã¼ã¿ã®ç¨®é¡ã¯éããã¦ãã¾ããç¹ã«IoTæ©å¨ãªã©ããå¾ãããã人ã«ããå¤å¥ãå°é£ãªã»ã©ã®æ¿ããæ¯åã®æç³»åãã¼ã¿ã精度ããèªåçã«åé¡ãããã¨ã¯å°é£ã§ããã ä»åãæå 端æ°å¦ã
Note: this post was originally written in January 2016. It is now very outdated. Please see this example of how to visualize convnet filters for an up-to-date alternative, or check out chapter 9 of my book "Deep Learning with Python (2nd edition)". An exploration of convnet filters with Keras In this post, we take a look at what deep convolutional neural networks (convnets) really learn, and how t
ç±³Googleã¯1æ21æ¥ï¼ç¾å°æéï¼ãç¡æãªã³ã©ã¤ã³å¦ç¿ããã°ã©ã ï¼MOOCï¼UDACITYã¨ååãããã£ã¼ãã©ã¼ãã³ã°ãå¦ã¹ãç¡æã³ã¼ã¹ãDeep Learningï¼Taking machine learning to the next levelããéè¨ããã¨çºè¡¨ããã ãã®çæéã®éä¸ã³ã¼ã¹ï¼ç´3ã«æï¼ã¯ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãLong short term memory networkï¼LSTMï¼ãªã©ããã£ã¼ãã©ã¼ãã³ã°ã®åºæ¬ãå¦ã¹ããå¦ç¿ã«ã¯Googleãæ¨å¹´11æã«ãªã¼ãã³ã½ã¼ã¹åããæ©æ¢°å¦ç¿ã·ã¹ãã ãTensorFlowãã使ãã ãã®ã³ã¼ã¹ã履修ããã¨ãæ©æ¢°å¦ç¿ã®ããå¦ä½ãåå¾ã§ããä¸ç´ã³ã¼ã¹ãMachine Learning Engineer Nanodegreeãï¼æé¡199ãã«ããï¼ãåè¬ã§ããã Googleã¯ããã®ã³ã¼ã¹ã®ç®æ¨ã¯ãæ©æ¢°å¦ç¿ã«é«ãé¢å¿ã®ãã人ã ã«
ããã¤ãåå¼·ããããã¨äººå·¥ç¥è½ï¼æ©æ¢°å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ï¼Deep Learningï¼ã¨ãã£ããããã¯ã®è¨äºã®è¦ã¤ãã¦ã¯ã¢ã¼ã«ã¤ããã¦ãããã®ã®ãçµå±2015å¹´ã¯ä½ä¸ã¤ãããã«çµãã£ã¦ãã¾ã£ãã®ã§ãã¨ã«ããä¸æ©ã§ã足ãè¸ã¿åºãã¹ããæ¬è³ªçãªç解çã¯ãã¦ãããã¨ã«ãã試ãã¦ã¿ãã¨ãããã¨ããã£ã¦ã¿ã¾ããã 試ããã®ã¯ãTensorFlowãChainerãCaffe ã¨ãã£ãæ©æ¢°å¦ç¿ããã³ãã£ã¼ãã©ã¼ãã³ã°ã®ä»£è¡¨çãªã©ã¤ãã©ãªï¼ãã¬ã¼ã ã¯ã¼ã¯3種ã¨ã2015å¹´ã«è©±é¡ã«ãªã£ããã£ã¼ãã©ã¼ãã³ã°ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³2種ï¼DeepDreamãchainer-goghï¼ã ï¼DeepDreamã§è©¦ããçµæç»åï¼ ã¿ã¤ãã«ã«åæ¥ã¨æ¸ãã¾ãããããã¨ãã°TensorFlowã¯ç°å¢æ§ç¯ã ããªã10åãããã°çµããã§ãããããChainerãªãã¦ã³ãã³ãä¸çºãªã®ã§5ç§ãããã§ããCaffeã¯åã¯ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}