You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
çãããããã«ã¡ã¯ã ãã¥ã¼ã¹ãã¼ã ã®æ°åï¼å¹´ç®ã®æ°¸éã§ãã æ°åã¨è¨ãã¤ã¤ãããæ©ããã¨ï¼æã§å ¥ç¤¾ãã¦ç´ï¼å¹´ãçµã¡ã¾ããã æ¯æ¥æ°ãããã¨ã«ééãã¦ã¯ãææ¦ããæ¥ã ãéããã¦ã¾ãã WEBã¨ã³ã¸ãã¢å¤§åéï¼ã¨ããµã¤ãã§ã¯WEBã¨ã³ã¸ãã¢ãä¸éæ¡ç¨ã§åéãã¦ãã¾ãã âãã£ãªã¢ãã§ã³ã¸ã大æè¿â å å®ããç ä¿®å¶åº¦ã§æé·ãããæ¹ããã²ãã¡ããããå¿åãã ããã ããã§ãä»åã¯æ°ããæè¡ã¸ã®ææ¦ã¨ãããã¨ã§ãApache Sparkãã®å ¥éç¨ã«ãscalaãã§ã¯ã¼ãã«ã¦ã³ããä½ã£ã¦ã¿ãã®ã§ç´¹ä»ãã¾ãã Sparkã§åæ£å¦çãç°¡åã«ã³ã¼ãã£ã³ã°åºæ¥ãé°å²æ°ãå³ãã£ã¦ããã ããã°å¬ããæãã¾ãã Apache Sparkã¨ã¯Apache Sparkã¨ã¯ä½ãã¨ããã¨ãªã¼ãã³ã½ã¼ã¹ã®åæ£å¦çãã¬ã¼ã ã¯ã¼ã¯ã§ãã åæ£å¦çã¨ããã¨hadoopãæåã§ãããhadoopãhdfsã¨å¼ã°ããç¬èªã®ãã¡ã¤ã«ã·
Hadoopã®æ代ã¯çµãã£ããã¨ããè¨èª¬ããã¾ã«è¦ãããããã«ãªãã¾ããã ãã¡ããçµãã£ã¦ãªã©ãã¾ãããããããHadoopã¨ãã®åãå·»ãç°å¢ãå¤åããã®ã¯äºå®ã§ãã æ¬è¨äºã§ã¯ããã®å¤åãä½ãªã®ããæããã«ãããã®ä¸ã§ããªãHadoopã®æ代ã¯çµãã£ãã¨ãã主張ãå®æ ãæ£ãã表ãã¦ããªãã®ãã説æãã¦ããã¾ãã DISCLAIMER ç§ã¯Hadoopãä¸å¿ã¨ãããã¼ã¿åºç¤ãåãæ±ããã³ãã¼ãClouderaã®ç¤¾å¡ã§ãã ä¸ç«çã«æ¸ãããåªãã¾ãããæå±çµç¹ã«ãã£ã¦çºçãããã¤ã¢ã¹ã®å®å ¨ãªæé¤ãä¿è¨¼ãããã¨ã¯ã§ãã¾ããã 以ä¸ããäºæ¿ã®ä¸ãèªã¿é²ãã¦ãã ããã è¦ç´ ãã¼ã¿åºç¤ã¯ãHadoopã®ç»å ´ã«ããé常ã«å®ä¾¡ã¨ãªããä»ã¾ã§ã§ã¯ä¸å¯è½ã ã£ã大éã®ãã¼ã¿ãåãæ±ããããã«ãªãã¾ããã Hadoopã¯ãNoSQLãã¼ã ã®ä¸ãå¦çã¨ã³ã¸ã³ã§ããMapReduceã¨ã¹ãã¬ã¼ã¸ã§ããHDFSã
ããã«ã¡ã¯ãå°æ¾¤ã§ãã ä»åã¯ãSparkã®æ©æ¢°å¦ç¿ã©ã¤ãã©ãªã§ããMLlibãã©ã®ããã«å®è£ ããã¦ããã®ããè¦ã¦ã¿ã¾ãããã MLlibã«ã¯ãmllibããã±ã¼ã¸ã¨mlããã±ã¼ã¸ã®2ã¤ãããã¾ãã mlã®ã»ããæ°ããããã±ã¼ã¸ã¨ãªãã¾ãã®ã§ããã¡ãã«å«ã¾ãããã®ãè¦ã¦ãããã¨ã«ãã¾ãããã ã¯ããã« ä»åã¯ãApache Sparkã®ã½ã¼ã¹ã³ã¼ããå¤æ°æ²è¼ãã¦ãã¾ãã ãããã®ã©ã¤ã»ã³ã¹ã«é¢ãã¦ã¯çç¥ãã¦ãã¾ããããã¹ã¦Apache License 2.0ã¨ãªã£ã¦ãã¾ãã Apache Sparkã®ã©ã¤ã»ã³ã¹è¡¨è¨ã«é¢ãã¦ã¯ãLICENSEãã覧ãã ããã ã¾ããä»åã¯åã ã®å¦çã®ç´°ããå®è£ ã追ã£ã¦ãããã¨ãç®çã¨ããããã§ã¯ãªããPipelienãå©ç¨ããMLlibã®å¦çã®æµãã¨ãã¦ã©ã®ããã«ãªã£ã¦ããã®ããè¦ã¦ãããã¨ãç®çã¨ãã¦ãã¾ãã ãã®ããããã¹ã¦ã®ã½ã¼ã¹ã®è§£èª¬ãããããã§ã¯ã
åæ£ä¸¦åå¦çã®åºæ¬ã«é¢ãã解説ã¨ï¼åæ£ä¸¦åå¦çã®ãªã¼ãã³ã½ã¼ã¹çéã§æè¿èµ·ãã£ã¦ãããã¨ãã¾ã¨ããè³æã§ãï¼
ããã«ã¡ã¯ï¼Spark大好ããªæ´ã§ãã æ¬æ¥ã¯Spark 2.0ã§å¤§å¹ ã®æ¹åãè¡ããã¦ãSpark SQLã«ã¤ãã¦æ¸ããã¨æãã¾ãã å¼ç¤¾ã§ã¯CDHã®ãã¼ã¸ã§ã³ã¢ããããã¾ãã«è¡ããã¨ã§Spark,HBaseãªã©ã®ãããã¯ãã®ææ°ãã¼ã¸ã§ã³ã常ã«è©¦ããç°å¢ãä½ã£ã¦ããã¾ãã Spark 2.0ã«ã¤ãã¦ãå æ¥å¼ç¤¾ç¦ç°ã®ããå¾ ã¦ãªããSpark2.0ã®å°å ¥ã¨å®è·µã«ãæ¸ãã¦ãã¨ãã ãã使ããããã«ãªãã¾ããã ã¨ãããã¨ã§å°ãä¹ãé ããæãããã¾ãããæ¬æ¥ã¯Spark 2.0ã§Spark SQLã®å®åã試ãããã¨æãã¾ãã Spark 2.0ã§Spark SQLã®ä¸»ãªå¤æ´ç¹ã¯ä»¥ä¸ã®ï¼ã¤ SparkSession æ§è½æ¹å ãµãã¼ãããSQLãå¢ãã æ¬æ¥ã¯ä¸è¨ï¼ã¤ã®æ¹åã«ã¤ãã¦è§¦ãã¦ã¿ããã¨æãã¾ãã ãå¤æ´ãã®ï¼ã SparkSQLã®ãã¥ã¼ã¨ã³ããªãã¤ã³ãSparkSession Spark
2017 - 02 - 20 JJUG ãã¤ãã»ã»ããã¼ Kotlinï¼ãã¨ããï¼ã§Spark Frameworkã®è©±ããã¦ãã¾ãã #jjug #kotlin Kotlin JJUG ãã¤ãã»ã»ããã¼ Kotlinï¼ãã¨ããï¼ã§Spark FrameworkãKotlinã§æ¸ãã¦æ°æã¡(ã»âã»)イイ!!çãªè©±ããã¦ãã¾ããã ãæ±äº¬ãJJUG ãã¤ãã»ã»ããã¼ ãKotlinï¼ãã¨ããï¼ã 2/20(æ)éå¬ - æ¥æ¬Javaã¦ã¼ã¶ã¼ã°ã«ã¼ã/Japan Java User Group | Doorkeeper çºè¡¨ã¹ã©ã¤ãã¯ãã¡ããæ¬æ¥ã¯æªå¤©åã®ä¸ã足å´é ããããã¨ããããã¾ããã speakerdeck.com Server Side Kotlinãã£ã¦ãããðª a-yamada 2017-02-20 22:00 JJUG ãã¤ãã»ã»ããã¼ Kotlinï¼ãã¨ããï¼ã§Spark F
Spring Bootã«ããAPIããã¯ã¨ã³ãæ§ç¯å®è·µã¬ã¤ã 第2ç ä½å人ãã®éçºè ããInfoQã®ããããã¯ãPractical Guide to Building an API Back End with Spring BootããããSpring Bootã使ã£ãREST APIæ§ç¯ã®åºç¤ãå¦ãã ããã®æ¬ã§ã¯ãåºçæã«æ°ãããªãªã¼ã¹ããããã¼ã¸ã§ã³ã§ãã Spring Boot 2 ã使ç¨ãã¦ãããããããSpring Boot3ãæè¿ãªãªã¼ã¹ãããéè¦ãªå¤...
ããã«ã¡ã¯ï¼ DMM.comã©ã ããã°ãã¼ã¿é¨ã®ä¸éã§ãã 11æ8æ¥ã«éå¬ãããCloudera World Tokyo 2016ã« ããã°ãã¼ã¿é¨ã®ä¸éã¨é 家ã§ç»å£ãã¦ãã¾ããã è³æã®å ¬éãå«ãã¦ç°¡åã«å ±åããã¦ããã ããã°ã¨æãã¾ãï¼ ã»ãã·ã§ã³ã®æ¦è¦ ã»ãã·ã§ã³ã¿ã¤ãã«ã¯ã³ãã©ã ãDeep Learningãç¨ããé¡ä¼¼ç»åã¬ã³ã¡ã³ãã®SQL on Hadoopã«ããå®ç¾ã ç°¡åã«ç³ãä¸ãã¾ãã¨ã»ã»ã» Deep Learningãç¨ãããæ軽é¡ä¼¼ç»åã¬ã³ã¡ã³ãã®ãç´¹ä»ã§ãï¼ ç»åã®ç¹å¾´æ½åºããé¡ä¼¼åº¦è¨ç®ã¾ã§ãHiveãªã©ã®SQL on Hadoopã§å®ç¾ãã¾ããã Deep Learningã«ããç»å解æã§ã¯ã¢ãã¡ã漫ç»ãªã©ã®ã¤ã©ã¹ãç»åãã髪åãæè£ ã表æ ãªã©ã®ç¹å¾´ãæ½åºãã¦ãã¾ãã ãã®ç¹å¾´ãç¨ãã¦ãååã®ããã±ã¼ã¸ç»åã«ããé¡ä¼¼ç»åã¬ã³ã¡ã³ãã®å®ç¾ã«é¢ãã¦èª¬æãã¾ããã
1. â¼ä¸è¬ç¤¾å£æ³â¼äºº  æ å ±å¦ç理å¦ä¼ SOFTWARE  JAPAN  2016 ããã°ãã¼ã¿æ´»â½¤ç¨å®åãã©ã¼ã©ã CET(Capture  EveryThing)ããã¸ã§ã¯ãã«ããã æ©æ¢°å¦ç¿ã»ãã¼ã¿ãã¤ãã³ã°æåç· â¾¼é«æ³ï§æ â¼ä¸ æ ªå¼ä¼ç¤¾ãªã¯ã«ã¼ãã³ãã¥ãã±ã¼ã·ã§ã³ãº ICTã½ãªã¥ã¼ã·ã§ã³å±ã¢ããã¯ããã¸ã¼ãµã¼ãã¹éçºé¨ å ¼ æ ªå¼ä¼ç¤¾ãªã¯ã«ã¼ãã©ã¤ãã¹ã¿ã¤ã« ããããã¸ãã¹æ¬é¨ãã£ããããã¡ã³ããã¶ã¤ã³ã¦ããã ã¢ã¼ããã¯ã2 Â å ¼  ãªã¼ã³éçºã°ã«ã¼ã
ããã«ã¡ã¯ãGunosyãã¼ã¿åæé¨ã«æå±ãã¦ãã森æ¬ã§ãã 主ãªæ å½æ¥åã¯è¨äºé ä¿¡ã¢ã«ã´ãªãºã ã®æ¹åããã°åºç¤éç¨ã§ãã æè¿è¯ãèãé³æ¥½ã¯One Direction - Live While We're Youngã§ãã æ¬è¨äºã§ã¯ãSparkã§å©ç¨ã§ããDeep Learningãã¬ã¼ã ã¯ã¼ã¯ãã¾ã¨ãã¾ããã Gunosyã§ã¯Chainerã§ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ãå¿ç¨ããã¦ã¼ã¶ã¼ã®ãã¢ã°ã©ãã£ãã¯æ¨å®ãè¡ã£ã¦ãã¾ãã WebDB Forum 2016 gunosy from Hiroaki Kudo Chainer以å¤ã«ãå¤æ°ã®Deep Learningãã¬ã¼ã ã¯ã¼ã¯ãPythonãä¸å¿ã«æ°å¤ãåå¨ãã¾ãã TensorFlow, Keras, Caffe, Theanoãªã©ãªã©ãã©ã®ãã¬ã¼ã ã¯ã¼ã¯ãåªãã¦ãããã¨ããåçã¯ç¶æ³ã«å¿ãã¦å¤ããã¾ãããPythonã使ç¨ãã大
PlantUML ã使ãã¨ãã java -jar plantuml.jar ã ã¨ã»ãã®å°ããªãã¤ã¢ã°ã©ã ã®çæã«ãæ°ç§ããã£ã¦ãã¾ãã¾ãããã¼ã«ã«ã§ã¯ããã§ããããããã¾ããããã¦ã§ãã¢ããªã«çµã¿è¾¼ãã®ã¯ã¡ãã£ã¨ã¤ãã¤ãã§ãããã PlantUMLã¯Java製ãã¼ã«ãªã®ã§Javaã®ã¦ã§ãã¢ããªã«ãã¦ãã¾ãã°é«éã«ãªãã¯ããã¨æã£ã¦ãã£ã¦ã¿ã¾ããã ãªãã¸ããª: https://github.com/gfx/plantuml-service ã¦ã§ãã¢ããªã¨ãã£ã¦ããã¹ã /svg/:source ãããªããããªæå°éã®ãã®ã§ãã :source ã¯PlantUML Text Encodingã§ã¨ã³ã³ã¼ããããã½ã¼ã¹ãã¾ãã¯çã®PlantUMLã½ã¼ã¹ã§ããç¹ã«ãã£ãã·ã¥ãªã©ã¯ãã¾ããããæå ã®MBAã ã¨å°ããªãã¤ã¢ã°ã©ã ã®çæã§70msã»ã©ã«ãªã£ãã®ã§å®ç¨ã«èãããã§ãã PlantUMLã¯
Apache Spark 2.0æ£å¼çããªãªã¼ã¹ãANSI SQLæ¨æºãµãã¼ãã10å以ä¸ã®é«éåãªã© åæ£å¦çãã¬ã¼ã ã¯ã¼ã¯ã®ãApache Spark 2.0ãæ£å¼çã®ãªãªã¼ã¹ããéçºå ã®Databricksããçºè¡¨ããã¾ãããããã¾ã§Apache Sparkã¯ãã¼ã¸ã§ã³1.xï¼ç´åã®ææ°çã¯1.6ï¼ã§ããã®ã§ãã¡ã¸ã£ã¼ãã¼ã¸ã§ã³ã¢ããã¨ãªãã¾ãã Spark 2.0ã§æ大ã®æ°æ©è½ã¯ãæ°ããSQLãã¼ãµã¼ãæ¡ç¨ãããã¨ã«ããANSI SQLï¼SQL 2003ï¼ã¸ã®å¯¾å¿ã§ããããã°ãã¼ã¿ã®ãã³ããã¼ã¯ã®1ã¤ã§ããTPC-DSã®99種é¡ã®ã¯ã¨ãªããã®ã¾ã¾å®è¡å¯è½ã¨èª¬æããã¦ãããããã°ã©ããæ £ã親ããã ä¸è¬çãªSQLæã¯ãã¹ã¦å®è¡å¯è½ã«ãªãã¾ãã ã¾ããDataFrameã¨Datasetã¯çµ±åãããAPIã¨ãªãã¾ããã ããããAPIã®å¤æ´ãæ¹åãè¡ãããä¸æ¹ã§ãSpark 2.0ã§ã¯ãã
2016/07/25ã«ãå¤çã£çãï¼Spark + Python + Data Scienceç¥ãããéå¬ãã¾ããã connpass.com ä»åã¯Clouderaã«å ¥ã£ã¦åãã¦ã®ã³ãã¥ããã£ã¤ãã³ãã¨ãããã¨ã§ãããããªãã¨400人ãè¶ ããå¿åãããã ãã¦ã¨ã¦ããããããéãã§ãã ä¼å ´ããæä¾ããã ããDMM.comã©ãæ§ãçºè¡¨ããã ãããµã¤ãã¼ã¨ã¼ã¸ã§ã³ãã®å è¤ãããDMM.comã©ãã®å åµãããLTã®çæ§ãããã¨ããããã¾ããã togetter.com pandasã大è¦æ¨¡ãã¼ã¿ã«ã¤ãªãIbis Ibis: ããã pandas ⼤è¦æ¨¡ãã¼ã¿åæããã£ããã #summerDS from Cloudera Japan www.slideshare.net Ibisã¯pandasã®ä½è ã§ããã Wes McKinney(@wesmckinn) ã®ä½ã£ã¦ããã©ã¤ãã©ãªã§ãã ã²ã¨ã
Spark Summit 2016ã§ããã¼ã¯ããã£ãSparkã®REST serverã§ããlivyã§ãããMicrosoftãHDInsightä¸ã®Spark clusterã¨Jupyterãlivyã使ã£ã¦ç¹ããããããã«ããã¨èãã¦ãæ©é試ãã¦ã¿ã¾ããã Jupyterã£ã¦ä½ï¼ã¨ããæ¹ã¯ç°¡åã«è¨ãã¨ããã©ã¦ã¶ã§å種è¨èªã®REPLãåããã®ã¨æã£ã¦ãããã°ããã§ãã 詳細ã¯éå»ã«æ¸ãã以ä¸ã®è¨äºãèªãã§ã¿ã¦ãã ããã techlife.cookpad.com livyã¨ã¯ livyã¯Spark clusterãã³ã³ããã¼ã«ããããã®REST Serverã§ãã Microsoftã¯ããã¨jupyter notebookã®sparkmagicã使ã£ã¦HDInsightã¨jupyterãã¤ãªããããã«ãã¦ããããã§ãã MSã®åãçµã¿ã¯Spark Summit 2016ã®ãã¼ã¯ãããããã
ã¯ããã« ããã«ã¡ã¯ï¼ DMM.comã©ã ããã°ãã¼ã¿é¨ã®é´æ¨ã§ãã å é±ã®æ°´ã»æ¨ææ¥(6/15~6/16)ã«éå¬ãããIBM Datapalooza Tokyo - Japanã« å¼ç¤¾å åµ/é´æ¨ã§ç»å£ãã¦ãã¾ããã 主ãªã¿ã¼ã²ããã¯ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã»ãã¼ã¿ã¨ã³ã¸ãã¢ã§ãã ç§é´æ¨ã¯ããã®ã¤ãã³ããåã®ç»å£ã¨ãªãããããã§ãã¦ãã¾ããã・・・・・・ ç¡äºçµäºãããã¨ãåºæ¥ã¦å®å¿ãã¦ãã¾ãã ã©ããªã»ãã·ã§ã³ã ã£ãã®ãï¼ ã»ãã·ã§ã³ã®ã¿ã¤ãã«ãã³ãã© ãDMM.comã«ãããããã°ãã¼ã¿å¦çã®ããã®SQLæ´»ç¨è¡ã ã»ãã·ã§ã³ã®æ¦è¦ ç¾å¨DMM.comã§ã¯ã1æ¥ããã1åã¬ã³ã¼ã以ä¸ã®è¡åãã°ãä¸å¿ã«ã åãµã¼ãã¹ã®ã³ã³ãã³ãæ å ±ããå°åæ å ±ã®ãããªãªã¼ãã³ãã¼ã¿ãåéã ãã¼ã¿ããªãã³ãã¼ã±ãã£ã³ã°ããã¼ã±ãã£ã³ã°ãªã¼ãã¡ã¼ã·ã§ã³ã«æ´»ç¨ãã¦ãã¾ãã æ¬çºè¡¨ã§ã¯ãDMM.comã®ããã°
ãã¼ã¿åæããå°ãåºãããã¤ã³ãµã¤ãç¡ãã«AIï¼äººå·¥ç¥è½ï¼ã®æ´»ç¨ã¯å§ã¾ãã¾ãããç§ãã¡ã¯ãåæ¥çç¥èã¨ãã¼ã¿ã»ã¢ããªãã£ã¯ã¹æè¡ãé§ä½¿ããã¼ã¿ããªãã³çµå¶ãå¼·åã«æ¯æ´ãã¾ãã ãã¼ã¿ãã¢ããªãã£ã¯ã¹ãAIã¯ä¼æ¥ã«ã¨ã£ã¦ç«¶åä»ç¤¾ã¨ã®å·®å¥åãå³ããã¤ã¦ãªãã»ã©å¤§ããªè¦å ã«ãªã£ã¦ãã¾ããä»æ¥ã®çµå¶å¹¹é¨ãå¹çãåä¸ããªããæ°ããªåçæºãéæããæ°ãããã¸ãã¹ã¢ãã«ãã¿ã¤ã ãªã¼ã«æ§ç¯ããæ¹æ³ã模索ããä¸ã価å¤ãçã¿åºãæé·ãç¶ããä¼æ¥ã«ã¯ããã¼ã¿æ´»ç¨ãã¨ããå ±éé ãããã¾ããç§ãã¡ã¯ãç¡æ°ã®ãã¼ã¿ããä¼æ¥ã«ã¨ã£ã¦æ¬å½ã«å¿ è¦ãªãã¼ã¿ãæ´»ç¨ããããã®æ¹æ³ãç¥ã£ã¦ãã¾ãã å°æ¥ãè¦æ®ãããªãã¬ã¼ã·ã§ã³ä½å¶ãåãã¦ããä¼æ¥ã®åæ°ä»¥ä¸ï¼52ï¼ ï¼ã¯ããã§ã«ãã¼ã¿ã¨ã¢ããªãã£ã¯ã¹ã大è¦æ¨¡ã«æ´»ç¨ãã¦ãã¾ãããã¼ã¿ã¨AIã«é¢ããåãçµã¿ããã¸ãã¹æ¦ç¥ã«æ²¿ã£ã¦å®æ½ãããã¨ã§æè³å©ççãè¿ éã«æ大åããæçµçã«ã¯AIãã
Elasticsearchã«ãApache Sparkåãã®ã©ã¤ãã©ãªããããã¨ã¯ç¥ã£ã¦ããã®ã§ãããé·ããæãã¤ãã¦ããªãã¾ã¾ã ã£ãã®ã§ã1度試ãã¦ã¿ããã¨ã«ãã¾ããã Apache Spark support | Elasticsearch for Apache Hadoop [2.3] | Elastic ãã¡ãã使ããã¨ã§ãApache Sparkãæä¾ããAPIãElasticsearchã§ä½¿ããã¨ãã§ããããã«ãªãã¿ããã§ãããå é¨çã«ã¯ãelasticsearch-hadoopã«ä¾åãã¦ãã模æ§ã æ¥æ¬èªè¨äºãããããã§ãã 楽ããå¯è¦å ï¼ elasticsearchã¨Spark Streamingã®åºä¼ã | NTTãã¼ã¿å 端æè¡æ ªå¼ä¼ç¤¾ ã§ãä½ããããã§ãããã¾ãâ¦Spark Streamingã¨Twitterã§ããããä»åã¯ã以ä¸ã®ãã¼ãã§ãã£ã¦ã¿ããã¨ã«ãã¾ããã
ãç¥ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}