èªä½Rust製å°æ£åæ³æçæã©ã¤ãã©ãªãè¨ç®ã®é«éåã®ããBitboardã®128bitè¨ç®ãSIMDã§è¡ãããx86_64ã®AVX2ãAArch64ã®NEONãwasm32ã®simd128ã§åãããã«ããããå®è£ ã㦠åç°å¢ã§å¤å°éãæ¢ç´¢ã§ããããã«ãªã£ããhttps://t.co/h7Dz3X6BhTâ ãããã¼ãð¯ (@sugyan) July 2, 2022 ã¨ãããã¨ã§SIMDã§ã®é«éåã®ã¡ã¢ã SIMDã¨ã¯ å®è£ x86_64 åºæ¬æ¼ç® é£ã³å©ãè¨ç® AArch64 åå¤å¤å®ãã¼ãå¤å¤å® é£ã³å©ãè¨ç® Iterator WebAssembly Benchmark x86_64 AArch64 WebAssembly ææ³ SIMDã¨ã¯ ja.wikipedia.org ã®éããè¤æ°ã®ãã¼ã¿ã1å½ä»¤ã§åæã«æ¼ç®ãããã¨ãããã®ã å°æ£Bitboardã¯81ãã¹ã®ãã¼ã¿ã表ç¾ãã
ãµã¤ãã¦ãºã»ã©ãã®å æã§ãã ä»åã¯2æ17æ¥ã«éå¬ããããx86/x64æé©ååå¼·ä¼8ãã®æ¨¡æ§ã«ã¤ãã¦ãä¼ããã¾ãã 第7åãããªãã¨ç´3å¹´æ¯ãã§ãã ä»åã®çºè¡¨å 容ã¯AVX-512å¨ãã®è©±ã2件ãå½ä»¤ã®æ£ç¢ºãªã¬ã¤ãã³ã·ã®è©±ãå¹´æãããä¸éãé¨ããã¦ããMeltdownã¨Spectreã®è©±ã2件ã§ããã 以ä¸ãããããã®çºè¡¨å 容ã«ã¤ãã¦ç°¡åã«è§£èª¬ãã¾ãã AVX-512é¢ä¿ ç§ã®çºè¡¨ã¯ãAVX-512ï¼ãã©ã¼ãããï¼è©³è§£ãã§ããã AVX-512ã¯ã¾ã Skylake-Xãªã©ã®ä¸é¨ã®CPUã«ããæè¼ããã¦ãã¾ããããä»å¾å¾ã ã«æ¡ç¨ãå¢ããã§ãããã ï¼æ³¨æï¼21ãã¼ã¸ã®ã3å¤è«çãã¯ã3é è«çãã®æ¹ãé©åã§ãã AVX-512ã®ã¬ã¸ã¹ã¿æ§æãåºæ¬çãªå½ä»¤ã»ããã説æããå¾ãAVX2ã¾ã§ã«ã¯ãªãã£ããã¹ã¯ã¬ã¸ã¹ã¿ãéç丸ãã¢ã¼ããããã¼ããã£ã¹ããªã©ã®è§£èª¬ããã¾ããã ãã¹ã¯ã¬ã¸ã¹ã¿ã¯ä¾¿å©ã«
åãã« ãµã¤ãã¦ãºã»ã©ãã®å æã§ãã DNNï¼deep neural network : 深層å¦ç¿ï¼ã¨ããã°GPUãå°ç¨ããã»ããµã使ãã®ã主æµã§ãã ãããIntelã¯CPUã§é«éã«DNNãããããã®ã©ã¤ãã©ãª MKL-DNN ãæä¾ãã¦ãã¾ãã MKL-DNNã¯Intelã®ææ°CPUã«å¯¾å¿ãããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãªã®ã§ã³ã¼ããè¦ãã¨åå¼·ã«ãªãã¾ãã ããã§ã¯MKL-DNNã§ä½¿ããã¦ãããã¯ããã¯ãããã¤ãç´¹ä»ãã¾ãã æ¦è¦ MKL-DNNã®ç´¹ä» Xbyakã®ç´¹ä» å¼ã³åºãè¦ç´ å§ç¸®displacement ReLU exp å ç© vpdpbusd ãã£ãã·ã¥ã³ã³ããã¼ã« æ³å®èªè C++11ã¨x64 CPUã®ã¢ã»ã³ããªè¨èªã®ç¥èãããç¨åº¦ä»®å®ãã¾ãã æ©æ¢°å¦ç¿ã«ã¤ãã¦ã¯ãã®ç¥èããªãã¦ãæé©åææ³ãç解ã§ãããããæå°éã®èª¬æããã¾ãã MKL-DNNã®ç¹é· ã¾ãMKL-DNNã®
People have a misconception about WebAssembly. They think that the WebAssembly that landed in browsers back in 2017âwhich we called the minimum viable product (or MVP) of WebAssemblyâis the final version of WebAssembly. I can understand where that misconception comes from. The WebAssembly community group is really committed to backwards compatibility. This means that the WebAssembly that you creat
æ¦è¦ C++ã§SIMDãæ¸ã人åãã®è¯ãã©ã¤ãã©ãªãè¦ã¤ãã¾ããã https://github.com/p12tic/libsimdpp SIMDãtemplateã§æ±ããã¨ãã§ããã®ã§ãSSEãAVXãªã©ã®ç°ãªã£ãå½ä»¤ã»ããããfloat, doubleãªã©ã®ç°ãªã£ãåãåãã³ã¼ãã§æ±ããã¨ãã§ãã¾ãã ã¡ãªãã å½ä»¤ã»ãããç°¡åã«åãæ¿ãããã åãç°¡åã«åãæ¿ãããã ãããã¼ãªã³ãªã¼ã§å°å ¥ã楽 ã¢ã»ã³ãã©ãçµã¿è¾¼ã¿é¢æ°ã使ãããããªãlibsimdppã使ã£ãæ¹ãè¯ãã¨æãã¾ãã ãã¡ãªãã GPUã¨æ¨ªæã®æ½è±¡å(OpenCLãªã©)ã¯ã§ããªã ææ°ã®å½ä»¤ã«è¿½å¾ããªããããããªã OpenCLã¨ã©ã¡ããé¸ã¶ãã¯åå³ããå¿ è¦ãããããã§ãã OpenCLã ã¨CPUåãã®ã«ãªã«ãªãã¥ã¼ãã³ã°ã¯ã§ããªããããããªãã®ã§ãã«ãªã«ãªãã¥ã¼ãã³ã°ãããå¿ è¦ããããªããlibsimdppãè¯ãã¨
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? èªåèªããã¿ã¾ãããèªå·±ç´¹ä»ã¤ãã§ã§ã #èªå·±ç´¹ä» å¦çã®é ãµã¨å³æ¸é¤¨ã«ããã¦ãã£ãå¤ãã²ã¼ã éèªã« ãã²ã¼ã æ¥çã§ã¯æè£ ã髪ãèªç±ã ãé»é«ªã§ãªã¯ã«ã¼ãã¹ã¼ãçã¦ãã人ãããé髪ã§ã©ããªæè£ ããã¦ãã人ã®ã»ããããã£ã¨ã¨ã³ã¿ãã¤ã¡ã³ããªäººçãããã£ã¦ãã«éããªããã²ã¼ã æ¥çã§ã¯ç¬åµçãªäººã¯å¤§æè¿ã ã ã¨ãã£ããªã¯ã«ã¼ãè¨äºãã¿ã¦ãä¸ç¬ã§ã²ã¼ã ããã°ã©ãã«æ±ºãã¾ãã å¦çæ代ã¯åå¼·ã¯åºæ¥ããã©ãéå£çæ´»ã ææ¥ãèããã¨ãåºæ¥ã常ã«ææ¥ä¸èµ°ãåã£ã¦ã¾ãã 大å¦ã3ã¶æã§æ師ã¨å§å©ãã¦è¾ãã¦ãæ±äº¬ã«åºã¦ ããªã¼ã§ãã¸ãã¹ããã°ã©ãã³ã°ããã¾
æ¦è¦ 並ååã容æãªãããGPGPUçã§æç¨ã§ãããã¤ãããã¯ã½ã¼ããå®è£ ããã Wikipediaã§ã®èª¬æ(è±èª) ãã¤ã¼ããªå®è£ åææ¡ä»¶ ååã¨åæ§ã«Rustã®ãã¼ã¸ã§ã³ã¯1.19.0ã¨ãã¾ãã fn sort<T: PartialOrd>(&self, source: &mut [T]) { let source_size = source.len(); let size = source_size.next_power_of_two(); if source_size != size { return; } let half_size = size >> 1; let mut i = 2; while i <= size { let mut j = i >> 1; while j > 0 { let ml = j - 1; // ä¸ä½ããããã¹ã¯ let mh = !ml; //
HotSpot JavaVM ã®ãã¯ãã«åå¤æ æè¿ã® HotSpot JavaVM ã¯ã¹ã«ã©ã¼æ¼ç®ã®ç¹°ãè¿ãå¦çããã¯ãã«åã SIMD å½ä»¤ã«å¤æããæé©åãè¡ã£ã¦ãã¾ã (SIMD ã¨ã¯ä½ããã¨ãã話ã¯å¾ååç §)ãå®éã«æé©åãå¹ãã³ã¼ãã§è©¦ãã¦ã¿ãã¨ãã 1.5ï½2.8 åç¨åº¦ã®é度åä¸ãè¦ãããã®ã§ã大éã®æ¼ç®å¦çãè¡ã (GPGPU ã«é ¼ããªã) Java ã©ã¤ãã©ãªã§ãã¾ã使ããã¨ãåºæ¥ãã°æå¹ãªæé©åæ段ã«ãªãããããã¾ããã HotSpot ã® SIMD æé©å㯠Superword-Level Parallelism (SLP) ã«åºã¥ãã¦ãã¾ã (以éãã®æé©å㯠SLP ã¨å¼ã³ã¾ã)ãå ã ãã®è«æã¯æ代ãåæ ã㦠SIMD æªå¯¾å¿ã®ç»åã»é³å£°å¦çãã³ã³ãã¤ã©ãã©ã³ã¿ã¤ã ã®ã¬ã¤ã¤ã¼ã§ SIMD ãå©ç¨ããå½ä»¤ã«å¤æãããã¨ãç®çã¨ãã¦ãã¾ãããããã㯠SIMD å½ä»¤
æ¦è¦ æ°ããããªããã£ãåã§ããSIMDååã³APIãV8ã§å®è£ ããã¦ãã¦ããã SIMDã¨ã¯ãè¤æ°ã®æ°å¤ã並ã¹ã¦ï¼ã¤ã®å¤ã¨ãããããªãã¼ã¿åã§ããã ããã¯CPUã«ãã£ã¦å¹çè¯ããµãã¼ãããã¦ãããã¼ã¿åã§ããã 1 + 2 -> 3 ãããããã« [ 1, 2, 3, 4 ] + [ 2, 3, 4, 5 ] -> [ 3, 5, 7, 9 ] ã1åã®æ¼ç®ã§ãããã¨ãã§ããã ã¤ã¾ãã沢山ã®æ°å¤ãæ±ãå ´é¢ã§SIMDåãå©ç¨ãããã¨ã§ãä½åãã®ããã©ã¼ãã³ã¹åä¸ãæå¾ ã§ããã ï¼â»WASMã«å ¥ããã¨ã¨ãªããESããã¯ä¸æ¦åãé¤ããã¾ãããï¼ å®è£ ãããå float32x4 32bitæµ®åå°æ°ç¹åã4ã¤ä¸¦ã¹ã128bitã®ãã¼ã¿å float32ã¯JSã®é常ã®numberã§ããã¨ããã®float64ãã精度ãä½ã int32x4 32bit符å·ä»ãæ´æ°åã4ã¤ä¸¦ã¹ã128bitã®ãã¼ã¿
In multimedia, we often write vector assembly (SIMD) implementations of computationally expensive functions to make our software faster. At a high level, there are three basic approaches to write assembly optimizations (for any architecture): intrinsics; inline assembly; hand-written assembly. Inline assembly is typically disliked because of its poor readability and portability. Intrinsics hide co
Webã§ã¨ã«ããé«éã«è¨ç®ããã ãã¾ã ã§ããWebã§ã¨ã«ããé«éãªè¨ç®ãè¡ãããã«äººçã®ä½ï¼ ãã使ã£ã¦ãã¾ãã ååã¯JavaScriptããç´æ¥SIMD.jsãå¼ã³ã¾ãããä»åã¯Emscriptenã使ç¨ããCè¨èªããSIMDå½ä»¤ãå¼ã³åºãã¦ã¿ã¾ãã é¡æã¨ãã¦ã¯å®çªã§ãããã³ãã«ããéåã使ç¨ãã¾ãã ãã³ãã«ããéåã¯ä»¥ä¸ã®æ¼¸åå¼ã§è¨ç®ãå¯è½ã§ãã°ãã°ä¸¦åæ¼ç®ã®èª²é¡ã¨ãã¦ã¨ãããããã¾ãã z ã¯è¤ç´ æ°ãªã®ã§å®é¨ã¨èé¨ãXYå¹³é¢ã«è¡¨ãã¨ä»¥ä¸ã®ããã«ãªãã¾ãã Emscriptenã使ã ä»åã¯Webã§ã¨ãããã¨ã§Cè¨èªã®ã³ã¼ããJavaScriptã³ã¼ãã«ã³ã³ãã¤ã«ããEmscriptenã使ç¨ãã¾ãã Emscriptenã使ç¨ããã¨asm.jsãå©ç¨ããæé©åãããããã¨ãã§ããããåç´ã«JavaScriptã§å®è£ ããæãããé«éã«ãªããã¨ãããã¾ãã Emscriptenã§ã¯
ã³ã³ãã¤ã«æã¨ãªã³ã¯æã« emcc -s SIMD ããã SIMD.js ã使ãããã±ã¼ã¹ã¯3種é¡ããã clang ããã©ã«ãã® LLVM autovectorization ãåãã¦èªåçã« SIMD åãã GCC æ¡å¼µã® SIMD Vector Extensions ã§æ示çã«ä½¿ã x86 ã® Streaming SIMD Extensions å½ä»¤ã使ãã詳細㯠大æ¬å¶ ãèªãã¹ã opencv ãªã© sse ãµãã¼ããã¦ãããã®ãã asm.js ã«ããå ´å㯠3 ã使ããã SIMD.js ãæå¹ãªãã©ã¦ã¶ãç¨æãã -s SIMD 㧠JS åºåãã㨠SIMD.js ã® polyfill ãä»ãã¦ããã ããããã®ã¾ã¾ä½¿ãã¨é ããªãã 2017å¹´ä¸åæç¾å¨æ¨æºã§ SIMD ãæå¹ãªãã©ã¦ã¶ã¯ãªãã chrome ã®å ´åèµ·åãã©ã°ã§V8ã®èµ·åãã©ã°ã渡ãã°æå¹ã«ãªãã c
æã«ãã£ã¦ããã°ã©ãã¯æååããä¸è¦ãªæåãåãé¤ãããå ´åãããã¾ããä¾ãã°ãããã¹ãã®ä¸é¨ãããã¹ã¦ã®è¡ã®æ«å°¾æåãåé¤ãããã¨ãã¾ãã ãã®æãå ¨ã¹ãã¼ã¹(â â)ãæ¹è¡ã³ã¼ã(â\nâããã³â\râ)ãåé¤ããåé¡ãèãã¦ã¿ã¾ãããã å¹ççã«å®è¡ããã«ã¯ã©ã®ãããªæ¹æ³ãããã®ã§ããããã size_t despace(char * bytes, size_t howmany) { size_t pos = 0; for(size_t i = 0; i < howmany; i++) { char c = bytes[i]; if (c == '\r' || c == '\n' || c == ' ') { continue; } bytes[pos++] = c; } return pos; } ä¸è¨ã®ã³ã¼ãã¯UTF-8ã§ã¨ã³ã³ã¼ããããæååã§åä½ãã¾ããUTF-8ãASCII
ã¯ããã« ç¾ä»£ã®CPUã§ã¯SIMD(Single Instruction Multiple Data)å½ä»¤ãå©ç¨ãããã¨ãã§ããï¼ SIMDå½ä»¤ã¨ã¯ãã®åã®éãï¼ã²ã¨ã¤ã®å½ä»¤ã§è¤æ°ã®ãã¼ã¿ãå¦çãããã®ã§ããï¼ Intelç³»ã®CPUã§ã¯ï¼MMX/SSE/AVX/AVX-512ã¨ãã£ãSIMDå½ä»¤ãå©ç¨å¯è½ã§ããï¼ARM CPUã§ã¯NEONã¨ããSIMDå½ä»¤ãç¨æããã¦ããï¼ åSIMDã¨SIMDç¨ã®ã¬ã¸ã¹ã¿ã®å¯¾å¿é¢ä¿ã¯ä»¥ä¸ã®ããã«ãªãï¼ é ç® å©ç¨å¯è½ã¬ã¸ã¹ã¿ MMX 64bit ã®MMã¬ã¸ã¹ã¿ SSE 128bit ã®XMMã¬ã¸ã¹ã¿ AVX 256bit ã®YMMã¬ã¸ã·ã¿ AVX-512 512bit ã®ZMMã¬ã¸ã·ã¿ ARM NEON 64bitã®D(Double-Word)ã¬ã¸ã¹ã¿ããã³128bitã®Q(Quad-Word)ã¬ã¸ã¹ã¿ ãããã®ã¬ã¸ã¹ã¿ãç¨ãã¦ï¼ä¾ãã°4ã¤ã®intåãä¸
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}