æ°ããªã©ã¤ãã©ãªsonnet sonnetã¨ã¯ DeepMind社製ã§ããã㨠TensorFlowã¨å ±ã«ä½¿ãã TensorFlow TensorFlowã®å½¹å² TensorFlowã®è¿½å ã©ã¤ãã©ãª Keras TensorFlow-Fold edward sonnet sonnet使ã£ã¦ã¿ãè¨äºã¾ã¨ã å¤åæ¥æ¬èªæéã§åºã使ã£ã¦ã¿ãè¨äº ã¤ã³ã¹ãã¼ã«ããä¸å¯§ã« ã³ã¼ãã«å¯¾ããã³ã¡ã³ããè±å¯ã§åèã«ãªãè¨äº æ°ããªã©ã¤ãã©ãªsonnet sonnetã¨ã¯ DeepMind社ã社å ã§å©ç¨ãã¦ãã深層å¦ç¿ã©ã¤ãã©ãªã§ãã æ¨æ¥ããããªã¼ãã³ã½ã¼ã¹åããã¾ããã DeepMind社製ã§ããã㨠DeepMindã¯ç¾å¨Googleåä¸ã®äººå·¥ç¥è½éçºä¼æ¥ã§ãã å§åçãªå°é家éå£ã®éã¾ãã§ããã深層å¦ç¿ã®ç 究ã«Googleãä¹ãåãéã«ãDeepMind社ã¯è²·åããã¾ããããã®å¾ãè³éåã¨ç 究åã
ãã£ã¼ãã©ã¼ãã³ã°ãå°å¦çã§ã使ããããã«ãã¦ã¿ã Trial to make easy to use deep learned neural network 2015.06.30 Updated by Ryo Shimizu on June 30, 2015, 06:59 am JST ãã®ä¸ã¶æã§ããã£ã¼ãã©ã¼ãã³ã°ãæ¥æ¿ã«ä½¿ãããããªã£ã¦ãã¦ãã¾ãã Googleåä¸ã®ãã£ã¼ãã©ã¼ãã³ã°ç 究ã°ã«ã¼ãDeep Mindã§ã¤ã³ã¿ã¼ã³ããã¦ããã¹ã¿ã³ãã©ã¼ã大å¦ã®å¦çã¯ãããªå°è©ããã¤ã¼ããã¦ãã¾ãã ããã£ã¼ãã©ã¼ãã³ã°ã«é¢ãã¦ãæ°ããã¯ã¼ã«ãªè«æãçºè¡¨ãããé度ã¯ããããèªããé度ããéãã ããããæ¯æ¥ã®ããã«ãã£ã¼ãã©ã¼ãã³ã°ã«é¢ããä½ããã®æ°ãã話é¡ãåºã¦ãã¾ãã ãããããããã£ã¼ãã©ã¼ãã³ã°ã¯çãä¸ãã£ã¦ããã®ã§ãã ã人工ç¥è½ã¯äººéãè¶ ãããããè¨ããæ±äº¬å¤§å¦ã®æ¾å°¾è±å çã«
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
SACSIS2013ã§ã®ãã¥ã¼ããªã¢ã«è¬æ¼è³æã§ããæ©æ¢°å¦ç¿ã®å°å ¥ï¼èæ¯ãææ³ãçè«ãå¿ç¨ï¼ãå®è·µï¼ãªã³ã©ã¤ã³å¦ç¿+ç·å½¢åé¡ã§å®éä½ã£ã¦ã¿ãã使ãéã®èª²é¡ãçºå±ï¼åæ£+ãªã¢ã«ã¿ã¤ã ã§ã®æ©æ¢°å¦ç¿ï¼Jubatusï¼ã深層å¦ç¿ï¼Deep Neural Netï¼ã«ã¤ãã¦ã¾ã¨ãã¾ããRead less
ååã¾ã§ã«ç´¹ä»ãããã¤ãºç·å½¢å帰ãå®è£ ãã¦ã¿ã¾ãã ãã¤ã¸ã¢ã³ã¨ããè¨èã«é£ããå°è±¡ãæããã¦ããæ¹ãããããããã¾ããããå®è£ ãåçã«é£ãããªã£ããã¯ãã¾ããããããå®å¿ãã ããã ãã¤ã¸ã¢ã³ã«é£ããã¨ãããããã¨ããã°ãå¢ãããã©ã¡ã¼ã¿ãã©ã決ãããã¨ããç¹ã¨ã確çåå¸ã¨ãã¦æ±ã¾ã解ãã©ãæ±ããã¨ããç¹ã§ãããããä»åã¯ãã®ããããå«ãã¦ãè¦ã¦ãããã¨ã«ãã¾ãããã ç°å¢ã¯ããã¾ã§ã¨åãPython&numpy&matplotlibã使ç¨ãã¾ããã¤ã³ã¹ãã¼ã«ãªã©ãã¾ã ã®æ¹ã¯é£è¼ç¬¬6åãåç §ãã ããã æ®éã®ç·å½¢å帰ã®ã³ã¼ããå¾©ç¿ ããã§ã¯ããã¤ãºç·å½¢å帰ã解ãã³ã¼ããå®éã«æ¸ãã¦ããã®ã§ããã第11åã§æ¸ããæ®éã®ç·å½¢å帰ã®ã³ã¼ãã«å¿ è¦ãªé¨åãæ¸ã足ãå½¢ã§é²ãã¾ãããããã ããç¹å¾´é¢æ°Ïã«ã¯ã¬ã¦ã¹åºåºã使ããã¨ã«ãã¾ãã ã¬ã¦ã¹åºåºã¯ã次ã®ãããªæ£è¦åå¸ã¨åãé£ãéåãããé¢æ°ã§ããã
ããã°ãã¼ã¿æ代âãªãããã¾æ©æ¢°å¦ç¿ãªã®ã Apache Hadoopï¼ä»¥ä¸ãHadoopï¼ã®ç»å ´ã§ãä»ã¾ã§æ¨ã¦ã¦ãããã¼ã¿ã貯ããã ãã§å¦çããããªãã£ããã¼ã¿ãæ´»ç¨ã§ããããã«ãªãã¾ããã æ´»ç¨æ段ã¨ãã¦æè¿ã¨ã¿ã«æ³¨ç®ããã¦ããæè¡ããæ©æ¢°å¦ç¿ãã§ãããHadoopã®å¼·ã¿ãçããç°¡åã«æ©æ¢°å¦ç¿ãè¡ãããã®ã©ã¤ãã©ãªãããApache Mahoutãï¼ä»¥ä¸ãMahoutï¼ã§ãã æ¬ç¨¿ã§ã¯Mahoutãåããã¦ã¿ããã¨ã§ãæ©æ¢°å¦ç¿ã®å¸¸èã身ã«ä»ãã¾ãã ãããããæ©æ¢°å¦ç¿ã¨ã¯ï¼ æ©æ¢°å¦ç¿ã¨ã¯ãä¸å®ã®ãã¼ã¿ãã³ã³ãã¥ã¼ã¿ã»ããã°ã©ã ã«ãå¦ç¿ãããï¼ããªãã¡ããã®ãã¼ã¿ã«æ½ããã¿ã¼ã³ãè¦åæ§ã表ããã¢ãã«ããèªåçã«æ§ç¯ããï¼ãä»ã®ãã¼ã¿ã«ãã®ã¢ãã«ãé©ç¨ããã°ããããã人éã®ããã«è¤éã§æè»ãªå¤æãè¡ããããã«ããã¨ãã試ã¿ã§ãã æ©æ¢°å¦ç¿ããã¸ãã¹ã«æ´»ç¨ããä¾ã¯ãã¬ã³ã¡ã³ãï¼ã¦ã¼ã¶ã¼ãåå
ä»åã¨æ¬¡åã§ããããããã¤ãºç·å½¢å帰ããç´¹ä»ãã¾ããã ãã¶æ©æ¢°å¦ç¿ããããªã£ã¦ãã¾ãã ããã¤ãºç·å½¢å帰ãã¨ã¯ããâ ç·å½¢å帰ãï¼â é£è¼ç¬¬8åã9åã11åï¼ãããã¤ã¸ã¢ã³ãï¼â 第10åï¼ã®èãæ¹ã®ãã¨ã§è§£ãã話ã§ãã ãã¦ã復ç¿ãå ¼ãã¦å¿ è¦ãªæºåããå ¥ã£ã¦ããã¾ãããã ç·å½¢å帰ã確çã®åé¡ã« ãå帰ãã¨ã¯ãä¸è¨ã§è¨ãã°ããã¼ã¿ç¹ããé¢æ°ãæ±ããæ¹æ³ãã§ããã ããããæ¼ ç¶ã¨ãé¢æ°ãæ±ãããã¨è¨ããã¦ãä½ããããããããããã¾ãããããã§ãç·å½¢å帰ãã§ã¯ãããããããã¼ã¹ã¨ãªãé¢æ°Ïi(x)ï¼åºåºé¢æ°ï¼ãç¨æãã¦ããã®ç·å½¢åã®ç¯å²ããä¸çªé©ããé¢æ°ãæ¢ãã¨ããã¢ããã¼ããã¨ãã¾ãã ãããªãä¿æ°wiã決ããã ãã§é¢æ°f(x)ãæ±ãããã¾ããããããã¹ããã¨ããããããããªãã¾ããã ããã§ã¯ããã®ä¿æ°ã¯ã©ã®ããã«æ±ºãããããã§ããããããã¡ããä¸çªããwiã«ãªãããã«ãããã¨ããã§ãããä½
What Is Machine Learning? Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowi
Learn new concepts from industry experts Gain a foundational understanding of a subject or toolDevelop job-relevant skills with hands-on projectsEarn a shareable career certificate Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each o
2006å¹´ã®ãã¼ã¿ãã¤ãã³ã°å¦ä¼ãIEEE ICDMã§é¸ã°ããããã¼ã¿ãã¤ãã³ã°ã§ä½¿ãããããã10ã¢ã«ã´ãªãºã ãã«æ²¿ã£ã¦æ©æ¢°å¦ç¿ã®ææ³ãç´¹ä»ãã¾ãï¼ãã®è«æã¯@doryokujinåã®ãã¹ãã§ç¥ãã¾ããããããã¨ããããã¾ãï¼ï¼ã å¿ ãããè«æã®å 容ã«ã¯æ²¿ã£ã¦ãããå人çãªç§è¦ãå ¥ã£ã¦ãã¾ãã®ã§ã詳細ã¯åè«æãã確èªä¸ãããã¾ãããã¼ã¿ãã¤ãã³ã°ã®å ¨ä½è¦³ããµã¼ãã¤ããã¹ã©ã¤ãè³æãããã¾ãã®ã§ããã¡ããä½µãã¦ã覧ä¸ããã ãã¼ã¿ãã¤ãã³ã°ã®åºç¤ View more presentations from Issei Kurahashi 1. C4.5 C4.5ã¯CLSãID3ã¨ãã£ãã¢ã«ã´ãªãºã ãæ¹è¯ãã¦ã§ãããã®ã§ã決å®æ¨ã使ã£ã¦åé¡å¨ãä½ãã¾ãã決å®æ¨ã¨ããã°CARTãè¯ã使ããã¾ãããCARTã¨ã®éãã¯ä»¥ä¸ã®ã¨ããã§ãã CARTã¯2åå²ããã§ããªããC4.5ã¯3åå²ä»¥ä¸ãã§ãã C
ååã®æ²è¼ãããã°ããéã空ãã¦ãã¾ãã¾ããããä»å¾ã¯ä¸è°·ã®æ¹ã§é£è¼ãé²ãã¦ãããã¨ã«ãªãã¾ãããçè«ç·¨ã¨å®è·µç·¨ã交äºã«é²ãã¦ããã¹ã¿ã¤ã«ã¯ç¶ç¶ãã¦ããã¾ãã®ã§ãå¼ãç¶ããããããé¡ããã¾ãã ç·å½¢å帰ã®å¾©ç¿ ä»åã¯é£è¼ç¬¬8åã¨ç¬¬9åã§ç´¹ä»ããç·å½¢å帰ãå®è£ ãã¦ã¿ãå®è·µç·¨ã§ãã ã¾ãã¯ç°¡åã«å¾©ç¿ãã¾ãããã å帰ã¨ã¯ãä¸ãããããã¼ã¿ã«é©ããï¼ãã¼ã¿ãä¸æã説æã§ããï¼é¢æ°ãæ±ããææ³ã§ããç¹ã®è¿ããéãæ²ç·ãè¦ã¤ããã¨ãã«ãç¨ãããã¾ããä¸ã§ããåºæ¬å½¢ã¨ãã¦é¸ãã é¢æ°ã®ç·å½¢åï¼å¼1ï¼ããé¢æ°ãæ¢ãã®ãç·å½¢å帰ã§ãã ï¼â å¼1ï¼ ããã§Ï(x)=(Ïm(x))ãåºåºé¢æ°ã¨ãããä½ãé©åãªé¢æ°ãé¸ãã§åºå®ãã¾ãããã®é¸ã³æ¹ã«ãã£ã¦ã¢ãã«ã®æ§è½ãå¾ãããé¢æ°ã®å½¢ãªã©ã決ã¾ãã®ã§ãåºåºé¢æ°ã¯è§£ãããåé¡ã«ãããã¦é¸ã¶å¿ è¦ãããã¾ãã ãããä»ã¯ãããããããåªå ãã¦ãã·ã³ãã«ãªå¤é å¼åºåºï¼å¼2ï¼
çµ±è¨çæ©æ¢°å¦ç¿å ¥é(under construction) æ©æ¢°å¦ç¿ã®æ´å²ppt pdf æ´å²ä»¥å 人工ç¥è½ã®æ代 å®ç¨åã®æ代 å°å ¥ppt pdf æ å ±ã®å¤æéç¨ã®ã¢ãã«å ãã¤ãºçµ±è¨ã®æ義 èå¥ã¢ãã«ã¨çæã¢ã㫠次å ã®åªã æ失é¢æ°, bias, variance, noise ãã¼ã¿ã®æ§è³ª æ°å¦ã®ããããppt pdf ç·å½¢ä»£æ°å¦ã§å½¹ç«ã¤å ¬å¼ 確çåå¸ æ å ±çè«ã®è«¸æ¦å¿µ (KL-divergenceãªã©) ç·å½¢å帰ã¨èå¥ppt pdf ç·å½¢å帰 æ£è¦æ¹ç¨å¼ æ£è¦åé ã®å°å ¥ ç·å½¢èå¥ ãã¼ã»ãããã³ ã«ã¼ãã«æ³ppt pdf ç·å½¢èå¥ã®ä¸è¬å ã«ã¼ãã«ã®æ§ç¯æ³ æ大ãã¼ã¸ã³åé¡å¨ ã½ãããã¼ã¸ã³ã®åé¡å¨ SVMã«ããå帰ã¢ãã« SVMå®è£ ä¸ã®å·¥å¤« ã¯ã©ã¹ã¿ãªã³ã°ppt pdf è·é¢ã®å®ç¾© é層åã¯ã©ã¹ã¿ãªã³ã° K-means ã¢ãã«æ¨å®ppt pdf æ½å¨å¤æ°ã®ããã¢ãã« EMã¢ã«
â»ãã®ã¨ã³ããªã¯ã社å¡ã®Tossyããã«ãã£ã¦ä½æããã第5åç 究課é¡ã¬ãã¼ãããã®æç²ã§ãã ã¯ããã« è¿å¹´ãæ©æ¢°å¦ç¿ãé常ã«æ³¨ç®ãéãã¦ãããæ©æ¢°å¦ç¿ãç¨ãããã¨ã«ãã£ã¦ããã¼ã¿ããæç¨ãªè¦åãã«ã¼ã«ãç¥è表ç¾ãå¤æåºæºãªã©ãæ½åºãããã¨ãã§ããã æ©æ¢°å¦ç¿ãç¨ããä¾ã¨ãã¦ãã¬ã³ã¡ã³ãã¼ã·ã§ã³ãã¯ã©ã¹ã¿ãªã³ã°ãåé¡ãå¸å ´äºæ¸¬ãè©å¤åæãæ å ±æ½åºãæåèªèããããããªã©ãæããããã ã¾ããã¢ã¡ã¼ããå«ãã¤ã³ã¿ã¼ããããµã¼ãã¹ã®æ®åã«ããã解æ対象ãã¼ã¿ãæ¥æ¿ã«å¢å ãã¦ããã解æã¢ã«ã´ãªãºã ã¯æä½ã§ãç·å½¢ã®è¨ç®éãå¿ è¦ã ããããã§ãæ¨ä»ã®ãã¼ã¿å¢å éãä¸åã£ã¦ããã ä¸çã§ä½æããããã¼ã¿éã¯ã2009 å¹´æç¹ã§0.8ZB ã«ããªã£ã¦ããã2020 å¹´ã«ã¯35ZB ã«ãè¨ãä¸ããã¨äºæ³ããã¦ãã(Degital Universe 2010)ã ãã®ãã¨ã«ãããæ©æ¢°å¦ç¿å¦çã®ä¸¦ååæ£ã¯ä»å¾
ãæ¼ã¯æåé£å ( ç§èå ) ã®290åå¼å½ãããã©ã«ãã® Hattoriãã§ããå®ï¼ ä»åã¯ååã«å¼ãç¶ããæ¨è¦ã®è©±ããããã¨æãã¾ãã ååã¯ã¢ã¯ã»ã¹ãã°ã使ã£ã¦é¢é£ããã¢ã¤ãã ( è¸è½äºº ) ãæ¨è¦ããã¨ãã話ã ã£ãã®ã§ãããä»åã¯æ示çãªè©ä¾¡ãã¼ã¿ãããå ´åã«ãããã使ã£ã¦ãã¦ã¼ã¶ã¼ã®æªè©ä¾¡ã¢ã¤ãã ã®è©ä¾¡äºæ¸¬ãããã¨ãã話ããã¾ãã ä¾ãã°ãä¸ã®ä¸ã®å¤§åã®ã¬ãã¥ã¼ãµã¤ãã«ã¯ã¦ã¼ã¶ã¼ã®5ã¤æè©ä¾¡ãæ稿ã§ããããã¿ãããã¾ããAmazonãé£ã¹ãã°ãPlayStation Network ( ã²ã¼ã ã¬ãã¥ã¼ )ããªã©ãªã©ä¾ããããã°ããªãããã¾ãããããããã£ãã¦ã¼ã¶ã¼ãã¤ãã¦ãããï¼ã¤æã®ãã¼ã¿ã使ã£ã¦ãã¦ã¼ã¶ã¼ã®å¥½ã¿ã®ã¢ã¤ãã ãæ¨è¦ãããã¨ãã話ã§ãã å®ã¯ãããã£ã話ã¯å¦è¡çã«ã¯å ¸åçãªãã¼ãã«ãªã£ã¦ãã¦ãææ³ãã»ã¼ç¢ºç«ããã¦ãã¾ããå ·ä½çã«ã¯ "å調ãã£ã«ã¿ãªã³ã°" ã¨ãã
ããããååã®ãç·å½¢å帰ãã確çåããããã¤ãºç·å½¢å帰ãã«é²ãã§ããäºå®ã§ãããä»åã¯ãã®ä¸ã§å¤§æ´»èºããããã¤ãºç¢ºçãã§ãï¼ç·¨æ³¨â ï¼â ããâ ãã¤ãºç¢ºçãã¯æ¬é£è¼ã®ç¬¬2åã§ä¸åº¦ç»å ´ãã¦ãã¾ããããã®ã¨ãã¯ååã®ç´¹ä»ã ãã§ããã ã¾ãã¯ããã¤ãºç¢ºçãã¨ã¯ä½ã§ããªãããã使ãã®ããã¨ããã¨ããããè¦ã¦ããã¾ãããã 編注 æ¬æ¥ã§ããã°ãã¼ã¿åå¸ãå®è·µããåããå±ãããäºå®ã§ãããã諸äºæ ã«ãããçè«ç·¨ã®ã話ãå ã«é²ãããã¦ããã ãã¾ããå¼ãç¶ãããæèªããã ããã°å¹¸ãã§ãã ã確çããæ±ãã é«æ ¡ã§ç¢ºçã®ææ¥ãåãããã¨ããã人ã§ããã°ãä¸åº¦ãããã¯æ¬¡ã®ãããªãã¨ãæã£ããã¨ã¯ããã¾ãããï¼ ãã³ã¤ã³ãæããã表ãåºã確çã¯1/2ã¨ãããµã¤ã³ããæ¯ã£ããããããã®ç®ãåºã確çã1/6ã¨ãããè¨ããã©ãã©ããã£ã¦ããã確ãããã®ï¼ã ã確ç1/6ã¨ãã£ã¦ãã6åæ¯ã£ã¦åç®ã1åãã¤åºããããªããã
For Creating Scalable Performant Machine Learning Applications Download Mahout Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end, or can be extended to other distributed backe
ååã®åç·¨ã§ã¯ãæå°äºä¹æ³ããç´¹ä»ããä¸ã§ãæ©æ¢°å¦ç¿ã¯æ°å¤ãã®ãã¨ãä»®å®ãã¦ããã®ä¸ã§ä¸çªè¯ãçããè¦ã¤ãããã®ã ã¨ãããã¨ãè¦ã¦ãããã¾ããã ç¹ã«ãæå°äºä¹æ³ãã§ãã¼ã¿ç¹ããç´ç·ãæ¨å®ããå ´åã次ã®3ã¤ã®ãã¨ãä»®å®ãã¦ãããã¨ãå¦ã³ã¾ããã å¤æ°éã®é¢ä¿ãé¢æ°ã§è¡¨ã é¢æ°ã®ã¢ãã«ã¯ç´ç·ï¼1次å¼ï¼ãèãã ãã©ã¡ã¼ã¿ãé¸ã¶ææ¨ã¨ãã¦äºä¹èª¤å·®ãç¨ãã ä»åã¯ãããã®ä»®å®ãæ¯ãè¿ããªãããä¸è¬åããããããæè»ãªæ©æ¢°å¦ç¿ã®ææ³ãç´¹ä»ãã¾ãããã æ»ããªããã©ãå帰ã å ã»ã©ã®ä»®å®ã®1çªç®ããâ å¤æ°éã®é¢ä¿ãé¢æ°ã§è¡¨ãããã¨ãæ©æ¢°å¦ç¿ã§ã¯ãå帰ãã¨å¼ã³ã¾ããã¤ã¾ãæ©æ¢°å¦ç¿ã®ä¸çã§ãå帰åé¡ã解ããã¨ãã£ãå ´åã¯ããã®ä»®å®ããã¦ãããã¨ã«ãªãã¾ãã ãå帰ãã¨ããè¨èã®ç±æ¥ ãã©ããã¦é¢æ°ãæ±ãããã¨ããå帰ãã¨å¼ã¶ã®ï¼ãä½ãæ»ãã®ï¼ãã¨æãããããã¾ããããã®ååã¯ããã¨ãã¨ãå¹³åå帰ãã¨ãã
ãæ©æ¢°å¦ç¿ã¯ãããããã¨ããã¿ã¤ãã«ã®é£è¼ãªã®ã§ãããå®ã¯ä»ã¾ã§æ©æ¢°å¦ç¿ãã®ãã®ã®è©±ãã»ã¨ãã©ããã¾ããã§ããâ¦â¦ãä»åããããããæ©æ¢°å¦ç¿ãã¯ãã¾ãã¾ãã é£è¼ã®ç¬¬1åã§ã¯ãæ©æ¢°å¦ç¿ã¨ã¯ã解決ãããåé¡ããæ°å¤åãããã¢ãã«ãã¨ãã¢ãã«ã®ãã©ã¡ã¼ã¿ããã¼ã¿ãã決ãããå¦ç¿ããããªããã¨ãç´¹ä»ãã¾ãããããããããã ãèãã¦ããªãã»ã©ãããã£ããã¨ãã人ã¯ã¾ãããªãã§ãããããã¯ãããå°ãå ·ä½çãªèª¬æã欲ããã¨ããã§ããã ããã§ä»åã¯ãæ°ããæ©æ¢°å¦ç¿ã®ä¸ã§ãã£ã¨ãæ´å²ã®ããææ³ãç´¹ä»ãã¾ããä»ã®æ°ããææ³ã«æ¯ã¹ã¦ããã£ã¨ã·ã³ãã«ã§ãããããã«ã¯ã¡ããã¨æ©æ¢°å¦ç¿ã®ã¨ãã»ã³ã¹ãè©°ã¾ã£ã¦ãã¾ããããããæ©æ¢°å¦ç¿ã¨ãããã®ãããå ·ä½çã«ç解ã§ããã¯ãã§ãã 2ã¤ã®å¤æ°ã®é¢ä¿ãè¦ã¤ããã ã¾ãã¯ä¾é¡ã¨ãã¦ã2ã¤ã®å¤æ°éã®é¢ä¿ã調ã¹ã¦ã¿ã¾ãããããâ 2ã¤ã®å¤æ°ãã«ã¯ããâ æ°æ¸©ã¨æ¹¿åº¦ãã®ããã«ããã«ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}